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Théorie analytique des nombres

• Qu’est-ce que la théorie analytique des nombres ?

• La théorie des nombres s’intéresse à des questions concernant les nombres entiers :
• Est-ce que, pour n ≥ 3, l’équation xn + yn = zn admet des solutions avec x, y, z ∈ Z et

xyz ̸= 0 ?
• Est-ce que tout entier pair supérieur à 2 peut s’écrire comme la somme de deux nombres

premiers ?
• Soit n ∈ N∗. Existe-t-il un triangle rectangle à côtés rationnels dont l’aire vaut n ?
• Soit m ≥ 2. De combien de manières est-il possible d’avoir m =

(
n
k

)
?

• Sa partie analytique utilise des outils d’analyse (limites, continuité, analyse
complexe, intégration, etc.) pour répondre à ces questions.

• Elle est particulièrement adaptée pour étudier les nombres premiers (notés p dans
toute la suite).
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Nombres premiers en progressions arithmétiques
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Nombres premiers en progressions arithmétiques

Une preuve vieille comme le monde

Théorème. (Euclide, -300 av. J.-C.)

Il existe une infinité de nombres premiers.

• Si p1, . . . , pr sont des nombres premiers, on pose N = 1 + p1 × · · · × pr .

• Alors N ≥ 2 donc admet un facteur premier p. Mais p ̸= pi sinon p diviserait
N − p1 × · · · × pr = 1 !

• Donc la liste p1, . . . , pr est incomplète.
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Nombres premiers en progressions arithmétiques

Compliquons la question

• Il existe une infinité de nombres premiers de la forme 4n+ 3

:
N = 4p1 × · · · × pr−1 est congru à −1 = 3 modulo 4 donc a au moins un facteur
premier congru à 3 modulo 4 !

• Il existe une infinité de nombres premiers de la forme 4n+ 1 :
N = 4(p1 × · · · × pr)2 + 1 a un facteur premier p tel que
(2p1 × · · · × pr)2 ≡ −1 mod p d’où p ≡ 1 mod 4 (une racine carrée de −1 est un
élément d’ordre 4 dans le groupe (Z/pZ)×).

• Schur (1912), Murty (1988) : Il existe d’autres cas qn+ a traitables de manière
élémentaire, mais on ne sait pas se passer d’analyse pour les progressions
arithmétiques qn+ a générales.
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Nombres premiers en progressions arithmétiques

Démonstration alternative

• Montrons l’existence d’une infinité de nombres premiers de la forme 4n+ 1 de
manière analytique, en suivant Dirichlet (inspiré d’Euler).

On considère les
produits (dits eulériens)

L1(s) =
∏
p̸=2

1
1 − 1

ps

et
L2(s) =

∏
p ̸=2

1

1 − (−1)
p−1

2
ps

pour s > 1.

• Alors

lnL1(s) =
∑
p ̸=2

− ln
(

1 − 1
ps

)
=

∑
k≥1

∑
p̸=2

1
kpks

=
∑
p ̸=2

1
ps

+O(1)

et de même

lnL2(s) =
∑
p ̸=2

(−1)
p−1

2

ps
+O(1).
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Nombres premiers en progressions arithmétiques

Démonstration alternative

• On en déduit que

1
2(lnL1(s) + lnL2(s)) =

∑
p≡1 mod 4

1
ps

+O(1).

• Or, en développant,

L1(s) =
∏
p̸=2

+∞∑
k=0

1
pks

=
∑

n impair

1
ns

et

L2(s) =
∏
p̸=2

+∞∑
k=0

(−1)
p−1

2

pks
=

∑
n≥1

(−1)n

(2n+ 1)s
.

• Donc lnL1(s) →
s→1+

+∞ et lnL2(s) →
s→1+

ln
(

π
4

)
̸= −∞.
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Nombres premiers en progressions arithmétiques

Démonstration alternative

• Conclusion :
∑

p≡1 mod 4

1
ps

= 1
2(lnL1(s) + L2(s)) +O(1) →

s→1+
+∞ et il existe une

infinité de nombres premiers de la forme 4n+ 1.

• On peut l’expliquer par le fait que
∑

n

1
n

diverge et L2(1) = π
4 ̸= 0 !

• En prenant la différence, on obtient l’existence d’une infinité de nombres premiers
de la forme 4n+ 3.
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Nombres premiers en progressions arithmétiques

Le théorème de la progression arithmétique

Théorème. (Dirichlet, 1837)

Soit a, q ∈ Z premiers entre eux. Alors il existe une infinité de nombres premiers
de la forme qn+ a.

• Pour détecter la condition p ≡ amod q, Dirichlet introduit les caractères de
Dirichlet : morphismes χ : (Z/qZ)× → C×. Ils vérifient la formule d’orthogonalité
suivante :

1
φ(q)

∑
χ caractère de Dirichlet mod q

χ(p)χ(a) =
{

1 si p ≡ amod q,
0 sinon.

• A chaque caractère de Dirichlet, on associe une fonction L de Dirichlet

L(s, χ) =
∑
n≥1

χ(n)
ns

=
∏

p

(
1 − χ(p)

ps

)−1

.

Le point-clé (et le plus difficile) de la démonstration de Dirichlet est que L(1, χ) ̸= 0
pour tout caractère non trivial, tandis que L(s, 1) →

s→1+
+∞.
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Nombres premiers en progressions arithmétiques

Une application

Théorème. ("Principe local-global")

Soit n ∈ Z tel que n est un carré modulo tous les nombres premiers sauf au plus
un nombre fini. Alors n est un carré.

• Soit n ∈ Z qui n’est pas un carré (ni une puissance de 2, cas plus simple). Alors 4n
n’est pas un carré non plus et on a 4n = prm avec p un nombre premier impair,
r ∈ N impair et m premiers avec p. Fixons un entier a tel que a n’est pas un carré
modulo p et notons p1, . . . , pt les facteurs premiers de m.

• Par le théorème chinois et le théorème de Dirichlet, on montre l’existence d’une
infinité de nombres premiers q tel que :{

q ≡ 1 mod 4,
q ≡ amod p,

∀i ∈ {1, . . . , t}, q ≡ 1 mod pi.

• Alors n n’est pas un carré modulo q :(
n

q

)
=

(
p

q

)r (
m

q

)
(réciprocité quadratique)

=
(
q

p

)r

= −1.
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Biais de Tchebychev et courses de nombres premiers
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Biais de Tchebychev et courses de nombres premiers

Répartition des nombres premiers dans les progressions arithmétiques

• On a établi l’existence d’une infinité de nombres premiers congrus à a modulo q.
Peut-on les compter jusqu’à une borne x donnée ?

Théorème. (des nombres premiers en progressions arithmétiques, de la Vallée-
Poussin, 1896)

Soit q ≥ 2 et a ∈ Z premier avec q. Notons π(x; q, a) = #{p ≤ x | p ≡ amod q}.
Alors

π(x; q, a) ∼
x→+∞

1
φ(q)

x

ln x .

• Avec q = 2, on retrouve le théorème des nombres premiers,
π(x) = #{p ≤ x} ∼

x→+∞
x

ln x
. L’équivalent dans le TNPPA montre donc que les

nombres premiers sont bien répartis dans les φ(q) classes inversibles modulo q.
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Biais de Tchebychev et courses de nombres premiers

Idées de démonstration

• Nous allons esquisser la preuve dans le cas q = 2, le cas général utilisant les mêmes
idées appliquées aux fonctions L(s, χ) de Dirichlet.

• Dans ce contexte, on retombe sur la fonction zêta de Riemann

ζ : s 7→
+∞∑
n=1

1
ns
, Re(s) > 1.

• Comme précédemment on a un produit eulérien

ζ(s) =
∏

p

1
1 − 1

ps

pour Re(s) > 1.
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Biais de Tchebychev et courses de nombres premiers

Idées de démonstration

• L’analyse complexe permet de prolonger de manière unique ζ en une fonction
"raisonnable" (holomorphe) sur C \ {1}.

• Pour des raisons techniques, posons

ψ(x) =
∑

p,k∈N∗

pk≤x

ln p.

• On montre que

π(x) =
∑
p≤x

1 = ψ(x)
ln(x) + o

(
x

ln(x)

)
,

donc il suffit de montrer que ψ(x) ∼
x→+∞

x.
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Biais de Tchebychev et courses de nombres premiers

Quel rapport avec les zéros ?

• La clé pour démontrer le TNP est de localiser les zéros de ζ.

• Avec encore plus d’analyse complexe, on montre la formule explicite suivante :

ψ(x) = x−
∑

ρ
ζ(ρ)=0

xρ

ρ
− ln(2π).
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Biais de Tchebychev et courses de nombres premiers

Illustration
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Biais de Tchebychev et courses de nombres premiers

• Comme ∣∣∣∣xρ

ρ

∣∣∣∣ = xRe(ρ)

|ρ| ,

comprendre la taille de ψ(x) (et donc de π(x)), c’est comprendre la localisation des
zéros de ζ.

• En particulier, on montre que le TNP est équivalent au fait que ζ(1 + it) ̸= 0 pour
tout t ∈ R∗ !

• Toute amélioration de cette information améliore le terme d’erreur dans le TNP. La
meilleure estimation possible correspond au fait que ζ(ρ) = 0 (et Re(ρ) > 0)
implique que Re(ρ) = 1

2 (hypothèse de Riemann).
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Biais de Tchebychev et courses de nombres premiers

Le biais de Tchebychev

• On a vu que π(x; 4, 1) ∼
x→+∞

π(x; 4, 3) ∼
x→+∞

x
2 ln(x) . Dans une lettre de 1853,

Tchebychev affirme que π(x; 4, 3) > π(x; 4, 1) à partir d’un certain rang.

• Notons
P4;3,1 = {x ≥ 2 | π(x; 4, 3) > π(x; 4, 1)}

et
P4;1,3 = {x ≥ 2 | π(x; 4, 1) > π(x; 4, 3)}.

Théorème. (Littlewood, 1914)

Les ensembles P4;3,1 et P4;1,3 sont non bornés.

• Autrement dit, il y a une infinité de changement de signe entre les quantités
π(x; 4, 3) et π(x; 4, 1) : Tchebychev s’est trompé ! (Mais pas tant que ça...)
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Biais de Tchebychev et courses de nombres premiers

π(x;4,3)−π(x;4,1)√
x/ log x

, 104 ≤ x ≤ 108

Source : Daniel Fiorilli
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Biais de Tchebychev et courses de nombres premiers

Rubinstein-Sarnak

• On peut essayer d’aller plus loin et mesurer la "taille" de P4;3,1.

Théorème. (Rubinstein-Sarnak, 1994)

Supposons GRH et LI pour la fonction L(s, χ4). Alors la densité logarithmique

δ(P4;3,1) = lim
X→+∞

1
lnX

∫ X

2
1P4;3,1 (t)dt

t

existe et δ(P4;3,1) ≈ 0, 9959 . . .

• Autrement dit, "99, 59% du temps" il y a plus de nombres premiers congrus à 3 mod
4 que congrus à 1 mod 4.

• LI est une hypothèse d’indépendance linéaire sur Q plausible pour les zéros de

L(s, χ4) =
∑+∞

n=1,n impair
(−1)

n−1
2

ns .
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Biais de Tchebychev et courses de nombres premiers

Idées de preuve

• Des méthodes standards montrent que

π(et; 4, 3) − π(et; 4, 1)
et/2/t

= 2 + 2
+∞∑
j=1

eiγj t

1
2 + iγj

+O
(1
t

)
,

où l’on a listé les zéros 1
2 + iγ1,

1
2 + iγ2, . . . de L(s, χ4).

• On applique alors le théorème d’équirépartition de Kronecker-Weyl : l’hypothèse
d’indépendance linéaire des γj permet de traiter les eiγj t comme des variables
aléatoires uniformes indépendantes sur le cercle unité.

• Ce sont des variables aléatoires centrées et on contrôle la variance de la somme,
d’où des estimations sur

”P(π(x; 4, 3) − π(x; 4, 1) > 0)”.
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Biais de Tchebychev et courses de nombres premiers

Courses de nombres premiers

• Plus généralement, Rubinstein et Sarnak montrent (sous les bonnes hypothèses)
l’existence de la densité logarithmique de

Pq;a1,...,ar = {x ≥ 2 | π(x; q, a1) > · · · > π(x; q, ar)}

pour q ≥ 2, a1, . . . , ar ∈ Z deux à deux distincts, premiers avec q. On parle de
course de nombres premiers.

• Dans une course à deux participants a et b mod q, il y a un biais en faveur de a
lorsque ce n’est pas un carré mod q et b en est un.

• Il y a aussi atténuation du biais lorsque q → +∞ :

δ(Pq;a1,...,ar ) →
q→+∞

1
r! .
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Biais de Tchebychev et courses de nombres premiers

π(x;101,3)−π(x;101,1)√
x/ log x

, 104 ≤ x ≤ 108

Source : Daniel Fiorilli
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Résultats récents

Quelques résultats récents

• On peut généraliser les questions de biais de Tchebychev dans beaucoup de
directions, par exemple :

• Courses de nombres premiers avec r(q) →
q→+∞

+∞ compétiteurs [Lamzouri,

Lamzouri-Harper]. Dépend de manière cruciale de la taille de r(q) par rapport à q, seuil
critique autour de ln q.

• Nombres premiers → polynômes irréductibles dans Fq [X] [Cha, Devin-Meng,
B.-Devin-Keliher-Li]. L’hypothèse LI n’est pas toujours vérifiée, mais elle l’est
"génériquement". Quand elle ne l’est pas, il peut y avoir des biais inattendus.

• Nombres premiers en progressions arithmétiques → nombres premiers vérifiant des
"congruences supérieures" (par exemple, 2 est un cube mod p) [Ng, Fiorilli-Jouve, B.,
B.-Hayani]. Le biais ne s’atténue pas forcément quand (l’analogue de) q → +∞, et la
présence de zéro en 1/2 peut apporter des biais inattendus.
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Résultats récents

Un résultat très récent

• Le nombre de Skewes est la borne inférieure xS des x ≥ 2 tels que
π(x) > li(x) =

∫ x

2
dt

ln t
(le "bon" équivalent dans le TNP).

Son existence suit des
travaux de Littlewood, et son étudiant Skewes fut le premier à en déterminer une
borne :

xS ≤ 101010963

.

Aujourd’hui on sait que xS est proche de 10316.

• Si q ≥ 2 on peut considérer un nombre de Skewes xq pour la course entre les
nombres premiers qui sont des carrés modulo q et ceux qui n’en sont pas, i.e. le
premier changement de signe xq entre π(x; q,□) − π(x; q,⊠).

Théorème. (B.-Hayani-Untrau, 2025)

En supposant GRH et une hypothèse convenable d’indépendance linéaire, il

existe une constante C > 0 telle que xq ≤ eeeCq

.

• Utilise les techniques précédentes et des outils provenant des probabilités transport
optimal (distances de Wasserstein, inégalité de Bobkov-Ledoux, inégalités de
grandes déviations, etc.).
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existe une constante C > 0 telle que xq ≤ eeeCq

.

• Utilise les techniques précédentes et des outils provenant des probabilités transport
optimal (distances de Wasserstein, inégalité de Bobkov-Ledoux, inégalités de
grandes déviations, etc.).
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Résultats récents

Un résultat très récent
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(le "bon" équivalent dans le TNP). Son existence suit des
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Résultats récents Merci !

Merci de votre attention !
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