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Géométrie affine réelle - Distance, isométries, angles,
aires, convexité

Dans toute cette feuille, nous ne considérerons que des espaces affines réels.

1 Distance et isométries

Proposition 1.1. Soit (€, ﬁ) un espace affine réel de dimension finie. Alors € est muni d’une
topologie induite par la topologie canonique de E via une bijection U — A+ U entre E et €.
Celle-ci ne dépend pas du point A € E. Si||-|| est une norme sur E alors

(4,B) || AL
définit une distance sur €. La topologie qui en découle est la topologie canonique sur .

Définition 1.2. Soit (&, B) un espace affine réel de dimension finie. On dit qu’il s’agit d’un
espace affine euclidien lorsque B est un espace euclidien. La distance euclidienne entre les
points A et B de & est alors notée |AB|.

Exercice 1. Soit £ un espace affine euclidien et A, B € £ distincts. Montrer que I € £ est le
miliew de A et B si et seulement si I € (AB) et |AlI| = |BI|.

Proposition 1.3. Soit (S,E) un espace affine euclidien et A, B € &. Alors l’ensemble des
points a égales distances de A et B est un hyperplan affine de €, appelé hyperplan médiateur
de A et B.

Démonstration. En notant I le milieu de A et B, alors pour tout point M € £ on a
— —
|AM|? = (AM, AM) = |AI|? + 2(Al, TM) + |TM?
qui est égal & |BM|? si et seulement si (AB, IM) = 0, ce qui définit bien un hyperplan affine. [

Définition 1.4. Soit (€, B) un espace affine euclidien. Une isométrie de £ est une application
affine f : € — & telle que pour tout A, B € E,|AB| = |f(A)f(B)|. Autrement dit, f est une

isométrie si et seulement si 7 €cO(FE).
Exemple 1.5.
1. Les translations sont des isométries.

2. Les symétries centrales, c’est-a-dire les homothéties de rapport —1, sont des isométries.

3. Les symétries orthogonales (relativement a deux sous-espaces affines (F, ?) et (G, 8)
en somme orthogonale, c’est-a-dire que ? est un supplémentaire orthogonal de G dans
) sont des isométries.



4. /\ Les projections (orthogonales ou non) et les homothéties de rapport différent de 1 et
—1 ne sont pas des isométries.

Les isométries des espaces affines euclidiens disposent d’une décomposition canonique.

Proposition 1.6. Soit (&, E) un espace affine euclidien et f : & — £ une isométrie. Il existe
un unique couple (t, f) ol t est une translation et f est une isométrie possédant un point fize
et tels que f =to f = fot.

Démonstm@n. Supposons qu’un tel couple (t, f) existe et notons @ le vecteur associé A t.
Alorson a f = 7, et comme ¢ et f commutent, on obtient facilement 7(7) =.
Si O est un point fixe de f alors f(O% = t(O) et donc Of(O; — . Ainsi, pour tout A € &,
. —~ .
Af( ) = z@—i-ﬁ—i-f(O)f(A; = U +( —id%)(0A). Comme 7 est orthogonal, ker(?—ldﬁ)

et im( f —id3) sont en somme directe (orthogonale) et I'écriture ci-dessus est donc unique. On
en déduit que la valeur de U est entidrement déterminée par f, et il en est donc de méme de
t, puis de f.

Pour 'existence, on écrit, pour un A € &, Af(A; = U+ U avec U € ker(? —idy) et
v e 1m(? —id) et on pose t la translation de vecteur . Alors f et ¢! (qui est la translation
de vecteur —7) commutent et il reste & voir que f =t o f a un point fixe. Mais alors f et
f ont la méme partie linéaire et on Af(A) = e 1m(7 —idy). Ainsi il existe O € £ tel que

— = T3 z T e G Ngr

v = 7(0/1) — O0A = f(O)f(A) + Af(A) + f(A)O d’ou finalement Of(O) = 0 c’est-a-dire

que O est un point fixe de f. O

~

Remarque 1.7. Ainsi, I'’étude des isométries affines se ramene a celle des isométries ayant
un point fixe, c’est-a-dire des isométries vectorielles. On pourra en déduire la classification des
isométries affines en dimension 2 et 3 plus loin.

Définition 1.8. Soit (E,ﬁ) un espace euclidien et f : & — £ une isométrie. On dit que f
est une isométrie directe, ou un déplacement, lorsque det? > 0 (ou ce qui revient au

meéme, det? = 1). Dans le cas contraire, on dit que f est une isométrie indirecte, ou un
antidéplacement.

Remarque 1.9. Cela ne dépend pas de la base choisie pour calculer le déterminant.

Proposition 1.10. Soit (5,3) un espace affine euclidien. L’ensemble des isométries de £
forme un groupe pour la composition, noté Is(E) et I’ensemble des isométries directes en forme
un sous-groupe distingué Is* ().

Exercice 2. Déterminer le quotient Is(E)/Is™(£). Montrer que Is(£) ~ E % O(ﬁ) en fizant un
point O € & et en utilisant la caractérisation interne du produit semi-direct. Etablir un produit
semi-direct analogue impliquant Isp(E) et Is5(€), ou lindice O indique que l'on considére les
isométries fizant O.

2 Cas particuliers des dimensions 2 et 3

On rappelle les énoncés suivants :



Théoreme 2.1. 1. Si E est un espace euclidien de dimension 2 alors son groupe ortho-
gonal est constitué des réflexions (symétrie orthogonale par rapport a une droite) et des
rotations, avec pour matrice dans une base orthonormée de la forme

cosf@ —sinf
Ro = <Sin0 cos 6 )

avec 6 € R. Toute rotation est la composée de deux réflexions, et réciproquement.

2. Si E est un espace euclidien de dimension 3 et [ est une isométrie de E, alors ou bien f
est une rotation par rapport a un aze et il existe une base orthonormée telle que la matrice

de f dans cette base soit
1 0
0 Rg)’

ou bien c’est le cas de —f. Tout élément de O(F) est le produit d’au plus trois réflexions
(symétrie orthogonale par rapport a un plan).

Remarque 2.2. De maniere générale, O(R") est engendré par les réflexions, et seule la parité
du nombre de réflexions est bien définie (de maniere analogue a la signature pour la décompo-
sition d’une permutation en produit de transpositions). Dans le cas de la dimension 3, on peut
noter que les réflexions sont exactement les opposés de rotations d’angle 7. Le nombre minimal
de réflexions nécessaires pour décomposer une isométrie permet de les classifier plus précisé-
ment : avec 0 réflexion on a l'identité, avec 1 on a les... réflexions, avec 2 on a les rotations, et
avec 3 on a —id et les antirotations.

Combiné avec la Proposition 1.6, cela mene a la classification des isométries affines en
dimension 2 et 3, pour laquelle il faut de plus prendre en compte les éventuels points fixes.

Théoréme 2.3. Soit (5,@) un espace affine euclidien.
1. Si & est de dimension 2, les isométries f de £ sont classifiées par :

(a) Si f fixe trois points non alignés, alors f = idg.

(b) Sinon, si f admet deux points fires A et B alors f est la réflexion par rapport a la
droite (AB).

(c) Sinon, si f a un point five A, alors f est une rotation de centre A.
(d) Sinon, f est une translation ou une symétrie glissée (composée d’une réflexion
d’axe D et d’une translation par un vecteur dans D ).

2. Si & est de dimension 3, les isométries f de £ sont classifiées par :

(a) Si f fize quatre points non coplanaires, alors f = idg.

(b) Sinon, si f admet trois points fires A, B et C' non alignés alors f est la réflexion par
rapport au plan (ABC).

(c) Sinon, si f a deuz points fizes A et B alors [ est une rotation d’aze (AB).

(d) Sinon, si f a un point fire A alors f est une antirotation (A est point fize et ? est
l'opposé d’une rotation).



(e) Sinon, f est une translation, une symétrie glissée (composée d’une réflexion de plan

P et d’une translation par un vecteur dans P ) ou un glissage (composée d’'une
rotation d’axe D et d’une translation par un vecteur dans D).

Remarque 2.4. Dans chacun des cas ci-dessus, on ajoute une réflexion pour passer d'un type
d’isométrie au suivant.

Exercice 3. Représenter sur un dessin l’action de chaque type d’isométrie du plan.

3 Angles dans le plan

Dans cette section, (€, B) est un plan euclidien. On suppose que I'on a construit I’exponen-
tielle complexe & partir de sa série entiere, et établi ses propriétés fondamentales (notamment,
'existence des fonctions cos et sin, la 2r-périodicité et la surjectivité sur le cercle unité).

Proposition 3.1. $i o,V € E sont non nuls, il existe un unique réel 6 € [0, x| tel que

cosf = <7’7> )
[ iiedl

On lappelle la mesure d’angle non orienté défini par U et V.

Remarque 3.2. N\ Tei I’angle est non orienté car le couple (7, 7) mene au méme angle que
le couple (7, 7) On parle aussi d’angle géométrique concernant ’angle formé par deux
demi-droites dirigées par U et U. Pour parler de (mesure) d’angle orienté, il va falloir orienter
le plan, c’est-a-dire fixer une base orthonormée.

Proposition 3.3. Le groupe SO(?) agit simplement transitivement sur le cercle unité de ﬁ

Démonstration. Soit (?, 7) une base orthonormée de E et soit @, ¥ des vecteurs unitaires
de E. Puisque || || = 1, il existe un unique réel ; € [0,2x] tel que & = cos0 7’ + sin 07y et
donc la rotation d’angle 6 envoie 7 sur . De méme, on trouve un unique 6, € [0, 27| envoyant
7 sur . Alors la rotation d’angle 6, — 0, envoie 2 sur ¥ et on a lunicité car une rotation
possédant un point fixe est I'identité. n

Définition 3.4. Un angle orienté est l'orbite d’un couple de vecteurs unitaires dans E sous
Uaction de SO(@).

Remarque 3.5. /A La terminologie est trompeuse car cette notion ne nécessite pas d’orienter
. Par contre c’est la mesure de cet angle qui dépendra d’une orientation.

Définition 3.6._>On dira que B est orienté lorsqu’on en a fixé une base orthonormée. Soient
U, Y € E \{0}. Si E est orienté, alors la mesure de l’angle orienté (U, 7), notée

(7, 7), est l'unique réel 0 € [0, 27] tel que la rotation d’angle 6 envoie HﬁTH sur |I7II'
Remarque 3.7. [Fondamentale] Il est nécessaire d’orienter le plan pour que cette définition
ait un sens, car si on passe d’une base orthonormée a une autre par une matrice de passage a

déterminant négatif (en fait c’est nécessairement une matrice de réflexion), alors I'angle 6 de la
rotation devient —6, a cause du calcul

10 1 0
(0 —1) R (0 —1>:R—9'
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C’est véritablement la notion de I'angle d’une rotation qui n’est pas bien définie sans orienter
le plan.

Définition 3.8. On dira que £ est orienté lorsque E Uest (cela revient a se donner un repére
affine orthonormée de ). Soit A, B,C € £ deux a deux distincts. Si € est orienté, la mesure

— —/>-\
d’angle orienté ABC' est (BA,@).

On définit de maniere similaire les angles et mesures d’angles orientés de droites orientées
sécantes (c’est-a-dire dont on a choisi un vecteur directeur unitaire) ou, ce qui revient au méme,
de demi-droites de méme base.

Une fois que I'on a établi tout ceci, on peut retrouver toutes les propriétés usuelles sur
les angles, comme l'existence et 1'unicité d’une bissectrice de deux demi-droites ou encore la
relation de Chasles sur les angles orientés.

Proposition 3.9 (Relation de Chasles). Si £ est orienté, A, B,C,D € & sont deur a deux
distincts alors ABC + CBD = ABD mod 2.

Autrement dit, les mesures modulo 27 d’angles orientés de deux demi-droites sécantes en
un point B donné sont munies d’une structure de groupes pour I’addition, isomorphe a R/27Z.
Dans la suite, on identifiera automatiquement une mesure d’angle orienté et sa classe modulo
2.

Proposition 3.10. Les isométries de £ préservent les angles non orientés. Si € est orienté, ses
isométries directes préservent les mesures d’angles orientés, tandis que ses isométries indirectes
les transforment en leur opposé modulo 2.

Remarque 3.11. Plus généralement, les applications affines préservant les angles sont les
similitudes, composées d'une homothétie et d'une isométrie. Elles sont directes ou indirectes
selon si 'isométrie en question l'est. En complexes, les similitudes directes correspondent a
la multiplication par un nombre complexe z, = 7€', et matriciellement elles correspondent

aux matrices de la forme <a . | avec a, b € R non tous nuls. Les applications holomorphes

b
ont la propriété d’étre exactement les applications différentiables du plan dont la différentielle
en tout point est une similitude directe (équations de Cauchy-Riemann). On dit qu’elles sont
conformes, car elles préservent les (mesures d’)angles (orientés) infinitésimaux, c’est-a-dire les
angles formés par les dérivées de deux courbes régulieres sécantes.

4 Géométrie du triangle

Dans cette section, (&, ﬁ) est un plan affine euclidien orienté. On va établir des propriétés
remarquables des triangles. Dans toute la suite, ABC' est un triangle de £ non plat, et il sera
fortement recommandé de tracer des figures pour chaque démonstration.

Théoréme 4.1. Dans le triangle ABC, les droites remarquables suivantes sont concourantes :

1. Les médianes se coupent en [’isobarycentre.
2. Les bissectrices se coupent en le centre du cercle inscrit au triangle.

3. Les médiatrices se coupent en le centre du cercle circonscrit.



4. Les hauteurs se coupent en un point appelé ’orthocentre.

Démonstration. 1. Déja vu en utilisant 1'associativité du barycentre.

2. Le théoreme de Pythagore (dans la version disant que la distance d’un point a une droite
est égale a la distance de ce point a son projeté orthogonal) donne que la bissectrice issue de A
est constituée des points a égale distance de (AB) et de (AC). Le point d’intersection de deux
bissectrices de ABC' est donc a égale distance de (AB), (AC) et (BC), donc également sur la
troisieme bissectrice. Le cercle centrée en ce point d’intersection et de rayon cette distance est
alors inscrit dans ABC.

3. Le point d’intersection de deux médiatrices est a égale distance des trois sommets, donc
sur la troisieme médiatrice, et le cercle centré en ce point et passant par I'un des sommets passe
par les trois.

4. On construit un triangle A’B’C” dont les médiatrices sont les hauteurs de ABC. Pour
ce faire, considérons I’homothétie h de centre le centre de gravité G du triangle et de rapport
—2, et @elons A" = h(A),B" = h(B) et C" = h(C). Si I est le milieu de [BC], on a vu que
2G1 +GA =0 et donc h(I) = A est le milieu de [h(B)h(C)] = [B'C"], et de méme pour les
autres milieux. Les médiatrices de A’B’'C" sont donc les hauteurs de ABC' car (BC') et (B'C")
sont paralleles, et donc ces hauteurs sont concourantes. O]

On prend désormais la convention suivante : si ABC est un triangle de &, alors on note
a = |BC|,b = |AC|,c = |AB|,a = CAB, 3 = ABC et v = BCA, ou le plan est orienté de
sorte que «, 3,7 €]0, 7.

Définition 4.2. On dit que ABC' est :

1. isocéle en A lorsque b = c.

2. équilatéral lorsque a = b = c.

3. rectangle en A (respectivement B, C) lorsque a = 7 (respectivement 3 = 3, v = 7).

On dit alors que l’angle est droit.

Remarque 4.3. /\ La mesure d’angle orientée d’un angle droit peut aussi valoir —7 dans
une autre orientation !

Proposition 4.4 (SOH-CAH-TOA). Si ABC est rectangle en B alors sina = §,cosa =
tana = 2.

et

[Salle}

Démonstration. Par définition, cosa = COS(E, B) = @. Mais comme B est le projeté

orthogonal de C' sur la droite (AB), on a <zﬁ, z@> = 2.
Soit r la rotation de centre A et d’angle a. Notons D = r~1(C). Alors |AD| = |AC| = b. Soit

E € & tel que (A, ?, @) soit un repere orthonormé direct. Alors C' = r(D) et ses coordonnées
dans ce repére sont (bcos a, bsin «v). Puisque le projeté orthogonal de C' sur la droite (AB) est
B, on a bien bsina = |BC| d’ou sina = §. Le dernier résultat vient de la définition de tan. [J

Proposition 4.5. On a o+ [+ v = 7.

Démonstration. Soit D € &£ tel que ABC'D soit un parallélogramme (c’est-a-dire que AB = ﬁ)
et soit A, C" € &€ tels que A’ € (AB) et B € [AA'], C" € (CB) et B € [CC"]. Alors on a les
égalités de mesures d’angles orientées suivantes :

o — (AB,AC) — (BA.BD). § - (BC.BA) = (B, BA). - (CA.CB) - (BD, BO).

6



= =
En sommant, on obtient o + § + v = (BC’, B?) =T. O

Théoréme 4.6 (d’Al-Kashi ou loi des cosinus). On a ¢ = a® + b* — 2abcos(7).
En particulier, ABC' est rectangle en C' si et seulement si a* +b* = ¢ (théoréme de Pytha-

gore).

Démonstration. 11 suffit de développer
— (AB,AB) = 1? + 2(AC,CB) + a?

et de constater que <1@,C@) = —<CT>4,C?> = —ab x cos(7). O
Corollaire 4.7. 5i ABC' est équilatéral alors a = =y = %”

Lemme 4.8. Soit C un cercle tel que [AC] en soit un diamétre. Alors pour tout B € C\{A,C},
le triangle ABC' est rectangle en B.

—
Démonstration. Soit O le centre de C et D € C tel que (OA, @ soit orthogonale. Quitte a

—
|OA| ‘01D| on peut supposer que (OA, (ﬁ)

soit orthonormée. Alors, Sl ’on note 6 la mesure d’angle orientée AOB on a O@ (cos 6’)0A+
(sinf) OD et OC = —OA. On caleule alors |BA> = (1 — cos6)? + sin?6 = 2 — 2cosf et
|BC’|2 = (1 + cosf)? +sin?6 = 2 + 2cos 6, de sorte que |BA|]*> + |BC|? = 4 = |AC|?, d’ott le
résultat par la réciproque du théoreme de Pythagore. O

appliquer 'homothétie de centre O et de rapport

Lemme 4.9. Le triangle ABC' est isocéle en A si et seulement si f = 7.

Démonstration. Supposons que ABC est isocele en A. Alors la médiane issue de A est également
la médiatrice issue de A, et donc la symétrie orthogonale d’axe cette médiatrice envoie B sur
C et C sur B. Comme il s’agit d’une isométrie négative, on obtient CBA = —BCA = A/B\C,
c’est-a-dire f = 7.

Réciproquement, si 5 = 7 et si par exemple |AB| > |AC|, soit D € [AB] tel que |[BD| =
|C'D| et montrons que D = A. Puisque BC'D est isocele en D, on a DBC = BCD.Or DBC = I6;
donc BCD = ~ et on obtient que D € (AC) et finalement que D = A, et donc ABC' est isocele
en A. =

Théoréme 4.10 (de 'angle inscrit ou de 'angle au centre). Soit C un cercle de centre O € £.

Alors pour tout A, B,C' € C, on a
(0C,0B) =

Démonstration. Posons A’ le point diamétralement opposé a A sur C. Alors le triangle A’OB

—

|

est isocele en O et par la relation entre les angles de ce triangle, on trouve (OA’ ,O?
i g—— - —

T — 2(@,314’). Or AA'B est rectangle en B, donc (B—1>4, BA") = 7 dou @,BA’) 5

_ =

(BA, B®) Le triangle OBA est également isocele en O, donc on a BA, ]% = (1@ 1@

l

== —— ==

d’ou finalement (OA’, (ﬁ) = 2(@, zﬁ) = 2(AA, B) De la méme maniére, on montre que
- — - —

(O?, 0OA") = 2(1@, AA’) d’ou le résultat en sommant. O

Théoréme 4.11 (Loi des sinus). On a 2~ = suliﬁ = -



Démonstration. Soit C le cercle circonscrit a ABC' et D le point diamétralement opposé a A sur

C. Le théoreme de 'angle inscrit appliqué avec ABC' et ABD donne que 7 = (Eg , 58) Mais
comme ABD est rectangle en D, on obtient siny = 5%, ou R est le rayon du cercle circonscrit.

2R
Ainsi ﬁ = 2R. La méme démonstration montre que =%~ = 2R et =2R. O]

b
sin sin 8

On déduit des relations précédentes les cas de similitudes des triangles.

Théoréme 4.12. Deuz triangles ABC' et A’B'C" du plan sont semblables (dans la méme orbite
sous laction des similitudes planes) si et seulement si l'un des propriétés suivantes est vérifiée :

Ny , s AB| _ |AC| _ |BC|
1. Leurs longueurs de cotés sont proportionnelles, c’est-a-dire que B = A0 = B

2. Deux de leurs angles orientés sont égaux.

3. Deux de leurs cotés ont des longueurs proportionnelles deuzr a deuz et l’angle orienté
définis par ces cotés sont égau.

Remarque 4.13. En imposant de plus 1’égalité d'une longueur de coté, on retrouve les cas
d’isométries des triangles, et en imposant les mesures d’angles orientés, les cas d’isométries
positives.

5 Notion d’aire

Dans cette section, on suppose connue la mesure de Lebesgue dans R™ et son interprétation
en termes de volume. Tout comme pour la topologie canonique, la mesure de Lebesgue se

transporte également a & via E.

Proposition 5.1. Soit ABCD wun parallélogramme. Notons h la hauteur de D a (AB) et A
Uaire du parallélogramme (dans le plan qu’il engendre). Alors A = h|AB| = \det(@, @)]

Démonstration. Soit E le projeté orthogonal de D sur (AB). Alors |[DE| = h et si 'on note

F=B —I—/ﬁ alors BFC' = AE D+1@. Par invariance de la mesure de Lebesgue par translation,
les triangles BFC' et AED ont la méme aire. De plus, EFCD est un rectangle, d’aire |EF|.|ED|
par définition de la mesure de Lebesgue dans le plan, c’est-a-dire h.|AB|. Par additivité de la
mesure de Lebesgue, on obtient finalement A = A(ABCD)+A(BFC)—AAED) = A\(EFCD) =
h|AB|.

—
Notons B’ I'image de B par la rotation d’angle 7 et de centre A. Alors AB’ est ortho-

—2
gonal a AB et donc colinéaire & AD. Ainsi |<@,AB’>\ = h|AB'| = h|AB|. Dans le repere

TR
<A, %, ég,'), si B a pour coordonnées (x1,%;) et D a pour coordonnées (zs,ys2) alors les
coordonnées de B’ sont (—yi, 1) et finalement A = |x1ys — xoyy| = |det(1ﬁ, E)| O

Remarque 5.2. On peut aussi définir la notion de volume orienté d'un parallélotope dans R™
a I'aide du déterminant et montrer que sa valeur absolue coincide avec la mesure de Lebesgue.

Corollaire 5.3. Soit ABC un triangle. Son aire est égale d 5| det(@, Bﬂ

Démonstration. Sil'on note D = B + 1@ alors ABC'D est un parallélogramme et BDC' est un
triangle semblable a ABC' puisqu’ils partagent les trois méme longueurs de cotés. Par additivité
de la mesure de Lebesgue, et le fait que l'aire de ABC'D soit égale a ]det(@, ﬁ)L on a le
résultat. O



Exercice 4. Soit A, B,C, D quatre points non coplanaires de I’espace. Montrer que le volume

du tétraédre qu’ils définissent est %, ou A est l'aire de l'une des faces et h est la hauteur

relative d cette face. En déduire que ce volume vaut | det(@, 1@, Eﬂ

6 Convexité

Dans cette section, £ est un espace affine réel.
Définition 6.1. Soit A, B € £. Le segment [AB] est
{Bar((A,t),(B,1—1))|te€|0,1]}.
Une partie C de € est convexe lorsque VA, B € C,[AB] C C.
Exemple 6.2.
1. Tout sous-espace affine de £ est convexe.

2. Si ‘H est un hyperplan affine de &, il existe une forme affine non nulle ¢ : £ - R et a € R
tels que H = ¢ '({a}). Alors le demi-plan ¢ !([a, +-00[) est convexe.

3. Si & est euclidien, une boule B(A,r) = {B € R" | |AB| < r} C R™ est convexe mais une
sphere S(A,r) ={B € R" | |AB| = r} C R" n’est jamais convexe (pour r > 0).

Définition 6.3. Une combinaison convexe des points Aq,..., A, € € est un barycentre de
Ay, .. Ay avee des poids Ay, ..., A\, € 10,1] tels que >0 4 A\ = 1.

Proposition 6.4. Soit C une partie de £. Alors C' est convexe si et seulement si C est stable
par combinaisons convexes.

Proposition 6.5. Soit (C;);er une famille de parties convezes de E. Alors Ne; C; est convexe.

Définition 6.6. Soit A une partie non vide de £. L’enveloppe convexe de A est

Conv(A)= [] C.

C' convexe
AcCC

C’est la plus petite (au sens de l'inclusion) partie convexe de € contenant A.
Exemple 6.7.

1. Si A, B € € alors Conv({A, B}) = [AB].

2. Si A, B,C € & ne sont pas alignés alors Conv({A, B, C}) est un triangle plein.

Théoréme 6.8 (Carathéodory). Supposons que € est de dimension n € N* et soit A une partie
non vide de £. Alors pour tout point M € Con(A), il existe n + 1 points Ay,..., A, tel que M
est combinaison convexe de Ao, ..., A,.

Exercice 5. Soit A une partie compacte non vide de € de dimension n. Alors Conv(A) est
compacte.

Définition 6.9. Soit C' un convexe de £. Un point x € C' est appelé point extrémal lorsque
C\ {z} est convexe. On note Ext(C) l’ensemble de ses points extrémaut.
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Exercice 6. Un convexre non vide admet-il toujours des points extrémaux ?

Exercice 7. Montrer qu’un point de C' est extrémal si et seulement il ne peut s’exprimer comme
combinaison convexe stricte d’éléments de C, si et seulement s’il n’est le milieu d’aucune paire
de points distincts de C'. En déduire que si f est une bijection affine et C' est un convexe de &,

alors Ext(f(C)) = f(Ext(C)).

Définition 6.10. Soit P une partie non vide de £. On appelle groupe d’isométries de P,
et on note Is(P), l'ensemble des isométries affines f de € telles que f(P) = P.

Proposition 6.11. Si £ est euclidien et P est une partie non vide de £ alors Is(P) est un
groupe pour la composition et Is™(P) = Is(P) N1sT(€) en est un sous-groupe distingué d’indice
au plus 2.

Théoréme 6.12. Supposons que £ est euclidien de dimension 3.
1. Si A est un tétraédre régulier alors Is(A) ~ &4 et IsT(A) ~ Ay.
2. Si C est un cube de € alors Is(A) = &y x Z/27 et IsT(A) ~ &,.

Autres themes en rapport avec la convexité : fonctions convexes, hyperplan d’appui, théo-
reme de Hahn-Banach géométrique, projection dans les espaces de Hilbert, théoreme de Markov-
Kakutani, théoreme du point fixe de Schauder, théoreme de Krein-Milman...

7 Exercices

Exercice 8. On considére le plan affine réel C muni de son repére affine orthonormé (0,1,14).
Soit zq, 29, 23, 24 des point distincts de C.

. . Ve —_—
1. Exprimer la longueur |z1 23|, la mesure d’angle orientée zyz z3.

2. Exprimer le produit scalaire (2123, z2125) et le déterminant det ;)(2123, 2324).

3. Montrer que z1, 29, z3 sont alignés si et seulement si % € R.

4. Montrer que si z1, 2o, 23, 24 ne sont pas alignés, alors ils sont sur un méme cercle si et
21—23

. . Z1—%24 7z
seulement si le birapport ~———= est réel.

22723
22724

Exercice 9. Soit (€, ﬁ) un espace affine réel de dimension finie et K un compact de £ d’in-
térieur non vide.

1. Montrer que le point
Ag 2 /1 () Az dA(z)
AMK) Je KR AT EAE
a bien un sens et ne dépend pas du point A € £. On appelle ce point le centre de K.
2. Montrer que le centre de K est invariant par les éléments f € GA(E) tels que f(K) = K.

3. En déduire que {f € GA(E) | f(K) = K} est un compact de GA(E).

Exercice 10. Soit (€, ﬁ) un espace affine euclidien et f : &€ — £ qui préserve les distances.
On va montrer que f est affine, et donc est une isométrie de €. On fize un point O € .
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1.

2.

3.

/.

Justifier que pour tout M,M' € £, on a (OM,OM'y = L(|JOM* + |OM'|* — |[MM'|?),
, s —
puis que (f(0)f(M), f(O)f(M")) = (OM,0M’).

En déduire que Uapplication fo : U f(O)f(O + 7) préserve les normes dans ﬁ

Soit ¢ : E (ﬁ)’ définie par (W) (V) = (fo(), 7). Montrer que ¢ est linéaire.
(Indication : Commencer par prendre e Vect(fol B )) puis étudier ce qu’il se passe sur
lorthogonal de ce sous-espace vectoriel.)

En utilisant ['isomorphisme canonique entre E et (E)’ provenant de la structure eucli-
dienne, montrer que fo est linéaire et conclure.

Remarque. Le théoreme de Mazur-Ulam énonce plus généralement que toute surjection iso-
métrique entre espaces vectoriels normées réels est affine.

Exercice 11. Soit (5,@) un plan euclidien et ABC un triangle non plat de £. On note O
le centre de son cercle circonscrit (dont on rappelle qu’il est le point d’intersection des média-
trices), G son isobarycentre (point d’intersection des médianes) et H son orthocentre (point
d’intersection des hauteurs).

1.

Soit X le point tel que @? = OT%—I—O?%—O?. Montrer que B = 25?, ou I est le milieu
de [BC].

En déduire que X appartient a la hauteur hy issue de A.

De la méme maniére, X appartient auzx hauteurs hg et he issues de B et C' respectivement.
En déduire que X = H.

Montrer que O, G et H sont alignés. La droite les contenant est appelée la droite d’FEuler
de ABC'.

Exercice 12. Soit (€, E) un plan euclidien orienté et ABC un triangle orienté non plat.

1.

Remarque. En posant p =

Justifier que Uaire délimitée par ABC vaut S = %aha, ot h, est la longueur |Al|, ot I
est le point d’intersection entre la hauteur issue de A et le coté [BC].

Montrer que sin ABI = sin B.
En déduire que h, = csin 3.

On a donc S = %acsinﬁ, et de méme S = %absinv = %bcsin a. Retrouver la loi des
SINUS.

Exprimer cosa a l'aide du théoréme d’Al-Kashi.

En utilisant que cos®> a+sin? o = 1, obtenir une formule pour S ne faisant intervenir que
les longueurs a,b et c.

%”*C le demi-périmetre de ABC, on peut réécrire cela sous la

forme S = \/p(p —a)(p—0b)(p — ¢) (formule de Héron).

Exercice 13. Soit ABC un triangle non aplati d’un plan euclidien (&, E)
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. Soit A" le projeté orthogonal de A sur (BC'). Ezprimer les coordonnées barycentriques de

A" dans le repére (B, C).

Les formules pour les projetés orthogonauz B’ et C' de B sur (AC) et C' sur (AB) respec-
tivement sont symétriques. En déduire que les coordonnées barycentriques de [’orthocentre
de ABC dans le repéere (A, B,C') sont (tan« : tan 8 : tan+y).

Soit I, J, K les milieux respectifs de [BC|,[AC] et [AB]. Montrer que les médiatrices de
ABC sont les hauteurs de IJK.

En déduire que les coordonnées barycentriques du centre du cercle circonscrit a ABC' dans
le repére (I, J, K) sont (2tana : 2tan § : 2tan-y).

Montrer que les coordonnées barycentriques du centre du cercle circonscrit a ABC' dans
le repére (A, B,C) sont (tan f + tan+y : tana + tan+y : tan « + tan f3).

Exercice 14. 1. Montrer que les sous-groupes finis de SO5(R) sont cycliques. A quel groupes

2.

d’isométries positives correspondent-ils ¢

Montrer que les sous-groupes finis de O9(R) sont soit cycliques, soit diédrauz.

Exercice 15. Soit G un sous-groupe fini de SO3(R) d’ordre n > 2.

1.
2.

10.

Si g € G\ {id}, justifier que g posséde deuz points fives sur la sphére unité S*.

On note X lensemble de ces points fizes. Justifier que 2 < |X| < 2(n —1) et que X est
stable par G.

Démontrer que le nombre d’orbites pour l'action de G sur X est 2 ou 3.
Montrer que si le nombre d’orbite est 2 alors ces orbites sont triviales et G' est cyclique.

Supposons maintenant qu’il y a trois orbites X1, Xo et X3. Montrer que G n’est pas cy-
clique, puis en notant nqy < ny < ng les cardinauz des stabilisateurs des orbites de X1, Xs
et X3 respectivement, montrer que n% + 7712 + nis =1+ %

En déduire que ny =2, (ng,n3) € {(2, %) ,(3,3),(3,4), (3, 5)}
Dans le cas ot (ng,n3) = (2, %), montrer que G ~ D, 5.

Dans le cas ot (ng,n3) = (3,3), montrer que n = 12. En considérant 'action de G sur
Xo, montrer que G ~ 24.

Dans le cas ot (ng,n3) = (3,4), montrer que n = 24. Montrer que G agit sur les paires
de points opposés dans Xo et montrer que G ~ &,.

Dans le cas ot (n2,n3) = (3,5), montrer que n = 60, puis déterminer les sous-groupes de
G. En déduire G ~ 205 (on pourra admettre qu’un groupe simple d’ordre 60 est isomorphe

a As).

Remarque. La classification ci-dessus correspond a la liste des solides platoniciens, c¢’est-a-dire
des polyedres réguliers convexes dans I’espace. Le groupe 20,4 est le groupe d’isométries positives
du tétraedre, G, est le groupe d’isométries positives du cube et de son dual I'octaedre, et s
est le groupe d’isométries positives de l'icosaedre et de son dual le dodécahedre.
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