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Géométrie affine réelle - Distance, isométries, angles,
aires, convexité

Dans toute cette feuille, nous ne considérerons que des espaces affines réels.

1 Distance et isométries
Proposition 1.1. Soit (E ,

−→
E ) un espace affine réel de dimension finie. Alors E est muni d’une

topologie induite par la topologie canonique de −→
E via une bijection −→u 7→ A + −→u entre −→

E et E.
Celle-ci ne dépend pas du point A ∈ E. Si || · || est une norme sur −→

E alors

(A, B) 7→ ||
−→
AB||

définit une distance sur E. La topologie qui en découle est la topologie canonique sur E.

Définition 1.2. Soit (E ,
−→
E ) un espace affine réel de dimension finie. On dit qu’il s’agit d’un

espace affine euclidien lorsque −→
E est un espace euclidien. La distance euclidienne entre les

points A et B de E est alors notée |AB|.

Exercice 1. Soit E un espace affine euclidien et A, B ∈ E distincts. Montrer que I ∈ E est le
milieu de A et B si et seulement si I ∈ (AB) et |AI| = |BI|.

Proposition 1.3. Soit (E ,
−→
E ) un espace affine euclidien et A, B ∈ E. Alors l’ensemble des

points à égales distances de A et B est un hyperplan affine de E, appelé hyperplan médiateur
de A et B.

Démonstration. En notant I le milieu de A et B, alors pour tout point M ∈ E on a

|AM |2 = ⟨
−−→
AM,

−−→
AM⟩ = |AI|2 + 2⟨

−→
AI,

−−→
IM⟩ + |IM |2

qui est égal à |BM |2 si et seulement si ⟨
−→
AB,

−−→
IM⟩ = 0, ce qui définit bien un hyperplan affine.

Définition 1.4. Soit (E ,
−→
E ) un espace affine euclidien. Une isométrie de E est une application

affine f : E → E telle que pour tout A, B ∈ E , |AB| = |f(A)f(B)|. Autrement dit, f est une
isométrie si et seulement si

−→
f ∈ O(−→E ).

Exemple 1.5.

1. Les translations sont des isométries.

2. Les symétries centrales, c’est-à-dire les homothéties de rapport −1, sont des isométries.

3. Les symétries orthogonales (relativement à deux sous-espaces affines (F ,
−→
F ) et (G,

−→
G)

en somme orthogonale, c’est-à-dire que −→
F est un supplémentaire orthogonal de −→

G dans−→
E ) sont des isométries.
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4. !△ Les projections (orthogonales ou non) et les homothéties de rapport différent de 1 et
−1 ne sont pas des isométries.

Les isométries des espaces affines euclidiens disposent d’une décomposition canonique.

Proposition 1.6. Soit (E ,
−→
E ) un espace affine euclidien et f : E → E une isométrie. Il existe

un unique couple (t, f̃) où t est une translation et f̃ est une isométrie possédant un point fixe
et tels que f = t ◦ f̃ = f̃ ◦ t.

Démonstration. Supposons qu’un tel couple (t, f̃) existe et notons −→u le vecteur associé à t.
Alors on a

−→̃
f = −→

f , et comme t et f̃ commutent, on obtient facilement −→
f (−→u ) = −→u .

Si O est un point fixe de f̃ alors f(O) = t(O) et donc
−−−−→
Of(O) = −→u . Ainsi, pour tout A ∈ E ,

−−−−→
Af(A) = −→

AO+−→u +
−−−−−−→
f(O)f(A) = −→u +(−→f − id−→

E
)(−→

OA). Comme −→
f est orthogonal, ker(−→f − id−→

E
)

et im(−→f − id−→
E

) sont en somme directe (orthogonale) et l’écriture ci-dessus est donc unique. On
en déduit que la valeur de −→u est entièrement déterminée par f , et il en est donc de même de
t, puis de f̃ .

Pour l’existence, on écrit, pour un A ∈ E ,
−−−−→
Af(A) = −→u + −→v avec −→u ∈ ker(−→f − id−→

E
) et

−→v ∈ im(−→f − id−→
E

) et on pose t la translation de vecteur −→u . Alors f et t−1 (qui est la translation
de vecteur −−→u ) commutent et il reste à voir que f̃ = t−1 ◦ f a un point fixe. Mais alors f et
f̃ ont la même partie linéaire et on

−−−−→
Af̃(A) = −→v ∈ im(−→f − id−→

E
). Ainsi il existe O ∈ E tel que

−→v = −→
f (−→

OA) −
−→
OA =

−−−−−−→
f̃(O)f̃(A) +

−−−−→
Af̃(A) +

−−−−→
f̃(A)O d’où finalement

−−−−→
Of̃(O) = −→0 c’est-à-dire

que O est un point fixe de f̃ .

Remarque 1.7. Ainsi, l’étude des isométries affines se ramène à celle des isométries ayant
un point fixe, c’est-à-dire des isométries vectorielles. On pourra en déduire la classification des
isométries affines en dimension 2 et 3 plus loin.

Définition 1.8. Soit (E ,
−→
E ) un espace euclidien et f : E → E une isométrie. On dit que f

est une isométrie directe, ou un déplacement, lorsque det −→
f > 0 (ou ce qui revient au

même, det −→
f = 1). Dans le cas contraire, on dit que f est une isométrie indirecte, ou un

antidéplacement.

Remarque 1.9. Cela ne dépend pas de la base choisie pour calculer le déterminant.

Proposition 1.10. Soit (E ,
−→
E ) un espace affine euclidien. L’ensemble des isométries de E

forme un groupe pour la composition, noté Is(E) et l’ensemble des isométries directes en forme
un sous-groupe distingué Is+(E).

Exercice 2. Déterminer le quotient Is(E)/Is+(E). Montrer que Is(E) ≃
−→
E ⋊O(−→E ) en fixant un

point O ∈ E et en utilisant la caractérisation interne du produit semi-direct. Établir un produit
semi-direct analogue impliquant IsO(E) et Is+

O(E), où l’indice O indique que l’on considère les
isométries fixant O.

2 Cas particuliers des dimensions 2 et 3
On rappelle les énoncés suivants :
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Théorème 2.1. 1. Si E est un espace euclidien de dimension 2 alors son groupe ortho-
gonal est constitué des réflexions (symétrie orthogonale par rapport à une droite) et des
rotations, avec pour matrice dans une base orthonormée de la forme

Rθ =
(

cos θ − sin θ
sin θ cos θ

)

avec θ ∈ R. Toute rotation est la composée de deux réflexions, et réciproquement.

2. Si E est un espace euclidien de dimension 3 et f est une isométrie de E, alors ou bien f
est une rotation par rapport à un axe et il existe une base orthonormée telle que la matrice
de f dans cette base soit (

1 0
0 Rθ

)
,

ou bien c’est le cas de −f . Tout élément de O(E) est le produit d’au plus trois réflexions
(symétrie orthogonale par rapport à un plan).

Remarque 2.2. De manière générale, O(Rn) est engendré par les réflexions, et seule la parité
du nombre de réflexions est bien définie (de manière analogue à la signature pour la décompo-
sition d’une permutation en produit de transpositions). Dans le cas de la dimension 3, on peut
noter que les réflexions sont exactement les opposés de rotations d’angle π. Le nombre minimal
de réflexions nécessaires pour décomposer une isométrie permet de les classifier plus précisé-
ment : avec 0 réflexion on a l’identité, avec 1 on a les... réflexions, avec 2 on a les rotations, et
avec 3 on a − id et les antirotations.

Combiné avec la Proposition 1.6, cela mène à la classification des isométries affines en
dimension 2 et 3, pour laquelle il faut de plus prendre en compte les éventuels points fixes.

Théorème 2.3. Soit (E ,
−→
E ) un espace affine euclidien.

1. Si E est de dimension 2, les isométries f de E sont classifiées par :

(a) Si f fixe trois points non alignés, alors f = idE .
(b) Sinon, si f admet deux points fixes A et B alors f est la réflexion par rapport à la

droite (AB).
(c) Sinon, si f a un point fixe A, alors f est une rotation de centre A.
(d) Sinon, f est une translation ou une symétrie glissée (composée d’une réflexion

d’axe D et d’une translation par un vecteur dans −→
D ).

2. Si E est de dimension 3, les isométries f de E sont classifiées par :

(a) Si f fixe quatre points non coplanaires, alors f = idE .
(b) Sinon, si f admet trois points fixes A, B et C non alignés alors f est la réflexion par

rapport au plan (ABC).
(c) Sinon, si f a deux points fixes A et B alors f est une rotation d’axe (AB).

(d) Sinon, si f a un point fixe A alors f est une antirotation (A est point fixe et
−→
f est

l’opposé d’une rotation).
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(e) Sinon, f est une translation, une symétrie glissée (composée d’une réflexion de plan
P et d’une translation par un vecteur dans −→

P ) ou un glissage (composée d’une
rotation d’axe D et d’une translation par un vecteur dans D).

Remarque 2.4. Dans chacun des cas ci-dessus, on ajoute une réflexion pour passer d’un type
d’isométrie au suivant.

Exercice 3. Représenter sur un dessin l’action de chaque type d’isométrie du plan.

3 Angles dans le plan
Dans cette section, (E ,

−→
E ) est un plan euclidien. On suppose que l’on a construit l’exponen-

tielle complexe à partir de sa série entière, et établi ses propriétés fondamentales (notamment,
l’existence des fonctions cos et sin, la 2π-périodicité et la surjectivité sur le cercle unité).

Proposition 3.1. Si −→u , −→v ∈
−→
E sont non nuls, il existe un unique réel θ ∈ [0, π] tel que

cos θ = ⟨−→u , −→v ⟩
||−→u ||.||−→v ||

.

On l’appelle la mesure d’angle non orienté défini par −→u et −→v .

Remarque 3.2. !△ Ici l’angle est non orienté car le couple (−→u , −→v ) mène au même angle que
le couple (−→v , −→u ). On parle aussi d’angle géométrique concernant l’angle formé par deux
demi-droites dirigées par −→u et −→v . Pour parler de (mesure) d’angle orienté, il va falloir orienter
le plan, c’est-à-dire fixer une base orthonormée.

Proposition 3.3. Le groupe SO(−→E ) agit simplement transitivement sur le cercle unité de −→
E .

Démonstration. Soit (−→x , −→y ) une base orthonormée de −→
E et soit −→u , −→v des vecteurs unitaires

de −→
E . Puisque ||−→u ||2 = 1, il existe un unique réel θ1 ∈ [0, 2π] tel que −→u = cos θ−→x + sin θ−→y et

donc la rotation d’angle θ envoie −→x sur −→u . De même, on trouve un unique θ2 ∈ [0, 2π] envoyant
−→x sur −→v . Alors la rotation d’angle θ2 − θ1 envoie −→u sur −→v et on a l’unicité car une rotation
possédant un point fixe est l’identité.

Définition 3.4. Un angle orienté est l’orbite d’un couple de vecteurs unitaires dans −→
E sous

l’action de SO(−→E ).

Remarque 3.5. !△ La terminologie est trompeuse car cette notion ne nécessite pas d’orienter
−→
E . Par contre c’est la mesure de cet angle qui dépendra d’une orientation.

Définition 3.6. On dira que −→
E est orienté lorsqu’on en a fixé une base orthonormée. Soient

−→u , −→y ∈
−→
E \ {−→0 }. Si −→

E est orienté, alors la mesure de l’angle orienté (−→u , −→v ), notée
̂(−→u , −→v ), est l’unique réel θ ∈ [0, 2π] tel que la rotation d’angle θ envoie −→u

||−→u || sur −→v
||−→v || .

Remarque 3.7. [Fondamentale] Il est nécessaire d’orienter le plan pour que cette définition
ait un sens, car si on passe d’une base orthonormée à une autre par une matrice de passage à
déterminant négatif (en fait c’est nécessairement une matrice de réflexion), alors l’angle θ de la
rotation devient −θ, à cause du calcul(

1 0
0 −1

)
Rθ

(
1 0
0 −1

)
= R−θ.
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C’est véritablement la notion de l’angle d’une rotation qui n’est pas bien définie sans orienter
le plan.

Définition 3.8. On dira que E est orienté lorsque −→
E l’est (cela revient à se donner un repère

affine orthonormée de E). Soit A, B, C ∈ E deux à deux distincts. Si E est orienté, la mesure
d’angle orienté ÂBC est ̂(−→

BA,
−−→
BC).

On définit de manière similaire les angles et mesures d’angles orientés de droites orientées
sécantes (c’est-à-dire dont on a choisi un vecteur directeur unitaire) ou, ce qui revient au même,
de demi-droites de même base.

Une fois que l’on a établi tout ceci, on peut retrouver toutes les propriétés usuelles sur
les angles, comme l’existence et l’unicité d’une bissectrice de deux demi-droites ou encore la
relation de Chasles sur les angles orientés.

Proposition 3.9 (Relation de Chasles). Si E est orienté, A, B, C, D ∈ E sont deux à deux
distincts alors ÂBC + ĈBD ≡ ÂBD mod 2π.

Autrement dit, les mesures modulo 2π d’angles orientés de deux demi-droites sécantes en
un point B donné sont munies d’une structure de groupes pour l’addition, isomorphe à R/2πZ.
Dans la suite, on identifiera automatiquement une mesure d’angle orienté et sa classe modulo
2π.

Proposition 3.10. Les isométries de E préservent les angles non orientés. Si E est orienté, ses
isométries directes préservent les mesures d’angles orientés, tandis que ses isométries indirectes
les transforment en leur opposé modulo 2π.

Remarque 3.11. Plus généralement, les applications affines préservant les angles sont les
similitudes, composées d’une homothétie et d’une isométrie. Elles sont directes ou indirectes
selon si l’isométrie en question l’est. En complexes, les similitudes directes correspondent à
la multiplication par un nombre complexe z0 = reiθ, et matriciellement elles correspondent

aux matrices de la forme
(

a −b
b a

)
avec a, b ∈ R non tous nuls. Les applications holomorphes

ont la propriété d’être exactement les applications différentiables du plan dont la différentielle
en tout point est une similitude directe (équations de Cauchy-Riemann). On dit qu’elles sont
conformes, car elles préservent les (mesures d’)angles (orientés) infinitésimaux, c’est-à-dire les
angles formés par les dérivées de deux courbes régulières sécantes.

4 Géométrie du triangle
Dans cette section, (E ,

−→
E ) est un plan affine euclidien orienté. On va établir des propriétés

remarquables des triangles. Dans toute la suite, ABC est un triangle de E non plat, et il sera
fortement recommandé de tracer des figures pour chaque démonstration.

Théorème 4.1. Dans le triangle ABC, les droites remarquables suivantes sont concourantes :

1. Les médianes se coupent en l’isobarycentre.

2. Les bissectrices se coupent en le centre du cercle inscrit au triangle.

3. Les médiatrices se coupent en le centre du cercle circonscrit.
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4. Les hauteurs se coupent en un point appelé l’orthocentre.

Démonstration. 1. Déjà vu en utilisant l’associativité du barycentre.
2. Le théorème de Pythagore (dans la version disant que la distance d’un point à une droite

est égale à la distance de ce point à son projeté orthogonal) donne que la bissectrice issue de A
est constituée des points à égale distance de (AB) et de (AC). Le point d’intersection de deux
bissectrices de ABC est donc à égale distance de (AB), (AC) et (BC), donc également sur la
troisième bissectrice. Le cercle centrée en ce point d’intersection et de rayon cette distance est
alors inscrit dans ABC.

3. Le point d’intersection de deux médiatrices est à égale distance des trois sommets, donc
sur la troisième médiatrice, et le cercle centré en ce point et passant par l’un des sommets passe
par les trois.

4. On construit un triangle A′B′C ′ dont les médiatrices sont les hauteurs de ABC. Pour
ce faire, considérons l’homothétie h de centre le centre de gravité G du triangle et de rapport
−2, et appelons A′ = h(A), B′ = h(B) et C ′ = h(C). Si I est le milieu de [BC], on a vu que
2−→
GI + −→

GA = −→0 et donc h(I) = A est le milieu de [h(B)h(C)] = [B′C ′], et de même pour les
autres milieux. Les médiatrices de A′B′C ′ sont donc les hauteurs de ABC car (BC) et (B′C ′)
sont parallèles, et donc ces hauteurs sont concourantes.

On prend désormais la convention suivante : si ABC est un triangle de E , alors on note
a = |BC|, b = |AC|, c = |AB|, α = ĈAB, β = ÂBC et γ = B̂CA, où le plan est orienté de
sorte que α, β, γ ∈]0, π[.

Définition 4.2. On dit que ABC est :

1. isocèle en A lorsque b = c.

2. équilatéral lorsque a = b = c.

3. rectangle en A (respectivement B, C) lorsque α = π
2 (respectivement β = π

2 , γ = π
2 ).

On dit alors que l’angle est droit.

Remarque 4.3. !△ La mesure d’angle orientée d’un angle droit peut aussi valoir −π
2 dans

une autre orientation !

Proposition 4.4 (SOH-CAH-TOA). Si ABC est rectangle en B alors sin α = a
b
, cos α = c

b
et

tan α = a
c
.

Démonstration. Par définition, cos α = cos(−→
AB,

−→
AC) = ⟨

−→
AB,

−→
AC⟩

bc
. Mais comme B est le projeté

orthogonal de C sur la droite (AB), on a ⟨
−→
AB,

−→
AC⟩ = c2.

Soit r la rotation de centre A et d’angle α. Notons D = r−1(C). Alors |AD| = |AC| = b. Soit
E ∈ E tel que (A,

−−→
AD

b
,

−→
AE

b
) soit un repère orthonormé direct. Alors C = r(D) et ses coordonnées

dans ce repère sont (b cos α, b sin α). Puisque le projeté orthogonal de C sur la droite (AB) est
B, on a bien b sin α = |BC| d’où sin α = a

b
. Le dernier résultat vient de la définition de tan.

Proposition 4.5. On a α + β + γ = π.

Démonstration. Soit D ∈ E tel que ABCD soit un parallélogramme (c’est-à-dire que −→
AB = −−→

DC)
et soit A′, C ′ ∈ E tels que A′ ∈ (AB) et B ∈ [AA′], C ′ ∈ (CB) et B ∈ [CC ′]. Alors on a les
égalités de mesures d’angles orientées suivantes :

α = ̂(−→
AB,

−→
AC) = ̂(

−−→
BA′,

−−→
BD), β = ̂(−−→BC,

−→
BA) = ̂(

−−→
BC ′,

−−→
BA′), γ = ̂(−→

CA,
−−→
CB) = ̂(−−→BD,

−−→
BC).
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En sommant, on obtient α + β + γ = ̂(
−−→
BC ′,

−−→
BC) = π.

Théorème 4.6 (d’Al-Kashi ou loi des cosinus). On a c2 = a2 + b2 − 2ab cos(γ).
En particulier, ABC est rectangle en C si et seulement si a2 + b2 = c2 (théorème de Pytha-

gore).

Démonstration. Il suffit de développer

c2 = ⟨
−→
AB,

−→
AB⟩ = b2 + 2⟨

−→
AC,

−−→
CB⟩ + a2

et de constater que ⟨
−→
AC,

−−→
CB⟩ = −⟨

−→
CA,

−−→
CB⟩ = −ab × cos(γ).

Corollaire 4.7. Si ABC est équilatéral alors α = β = γ = 2π
3 .

Lemme 4.8. Soit C un cercle tel que [AC] en soit un diamètre. Alors pour tout B ∈ C \{A, C},
le triangle ABC est rectangle en B.

Démonstration. Soit O le centre de C et D ∈ C tel que (−→
OA,

−−→
OD) soit orthogonale. Quitte à

appliquer l’homothétie de centre O et de rapport 1
|OA| = 1

|OD| , on peut supposer que (−→
OA,

−−→
OD)

soit orthonormée. Alors, si l’on note θ la mesure d’angle orientée ÂOB, on a −−→
OB = (cos θ)−→

OA+
(sin θ)−−→OD et −→

OC = −
−→
OA. On calcule alors |BA|2 = (1 − cos θ)2 + sin2 θ = 2 − 2 cos θ et

|BC|2 = (1 + cos θ)2 + sin2 θ = 2 + 2 cos θ, de sorte que |BA|2 + |BC|2 = 4 = |AC|2, d’où le
résultat par la réciproque du théorème de Pythagore.

Lemme 4.9. Le triangle ABC est isocèle en A si et seulement si β = γ.

Démonstration. Supposons que ABC est isocèle en A. Alors la médiane issue de A est également
la médiatrice issue de A, et donc la symétrie orthogonale d’axe cette médiatrice envoie B sur
C et C sur B. Comme il s’agit d’une isométrie négative, on obtient ĈBA = −B̂CA = ÂBC,
c’est-à-dire β = γ.

Réciproquement, si β = γ et si par exemple |AB| ≥ |AC|, soit D ∈ [AB] tel que |BD| =
|CD| et montrons que D = A. Puisque BCD est isocèle en D, on a D̂BC = B̂CD. Or D̂BC = β

donc B̂CD = γ et on obtient que D ∈ (AC) et finalement que D = A, et donc ABC est isocèle
en A.

Théorème 4.10 (de l’angle inscrit ou de l’angle au centre). Soit C un cercle de centre O ∈ E.
Alors pour tout A, B, C ∈ C, on a

̂(−→
OC,

−−→
OB) = 2α.

Démonstration. Posons A′ le point diamétralement opposé à A sur C. Alors le triangle A′OB

est isocèle en O et par la relation entre les angles de ce triangle, on trouve ̂(
−−→
OA′,

−−→
OB) =

π − 2 ̂(−−→BO,
−−→
BA′). Or AA′B est rectangle en B, donc ̂(−→

BA,
−−→
BA′) = π

2 d’où ̂(−−→BO,
−−→
BA′) = π

2 −
̂(−→

BA,
−−→
BO). Le triangle OBA est également isocèle en O, donc on a ̂(−→

BA,
−−→
BO) = ̂(−→

AO,
−→
AB),

d’où finalement ̂(
−−→
OA′,

−−→
OB) = 2 ̂(−→

AO,
−→
AB) = 2 ̂(

−−→
AA′,

−→
AB). De la même manière, on montre que

̂(−→
OC,

−−→
OA′) = 2 ̂(−→

AC,
−−→
AA′) d’où le résultat en sommant.

Théorème 4.11 (Loi des sinus). On a a
sin α

= b
sin β

= c
sin γ

.
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Démonstration. Soit C le cercle circonscrit à ABC et D le point diamétralement opposé à A sur
C. Le théorème de l’angle inscrit appliqué avec ABC et ABD donne que γ = ̂(−−→DB,

−−→
DC). Mais

comme ABD est rectangle en D, on obtient sin γ = c
2R

, où R est le rayon du cercle circonscrit.
Ainsi c

sin γ
= 2R. La même démonstration montre que a

sin α
= 2R et b

sin β
= 2R.

On déduit des relations précédentes les cas de similitudes des triangles.

Théorème 4.12. Deux triangles ABC et A′B′C ′ du plan sont semblables (dans la même orbite
sous l’action des similitudes planes) si et seulement si l’un des propriétés suivantes est vérifiée :

1. Leurs longueurs de côtés sont proportionnelles, c’est-à-dire que |AB|
|A′B′| = |AC|

|A′C′| = |BC|
|B′C′| .

2. Deux de leurs angles orientés sont égaux.

3. Deux de leurs côtés ont des longueurs proportionnelles deux à deux et l’angle orienté
définis par ces côtés sont égaux.

Remarque 4.13. En imposant de plus l’égalité d’une longueur de côté, on retrouve les cas
d’isométries des triangles, et en imposant les mesures d’angles orientés, les cas d’isométries
positives.

5 Notion d’aire
Dans cette section, on suppose connue la mesure de Lebesgue dans Rn et son interprétation

en termes de volume. Tout comme pour la topologie canonique, la mesure de Lebesgue se
transporte également à E via −→

E .

Proposition 5.1. Soit ABCD un parallélogramme. Notons h la hauteur de D à (AB) et A
l’aire du parallélogramme (dans le plan qu’il engendre). Alors A = h|AB| = | det(−→

AB,
−−→
AD)|.

Démonstration. Soit E le projeté orthogonal de D sur (AB). Alors |DE| = h et si l’on note
F = B+−→

AE alors BFC = AED+−→
AB. Par invariance de la mesure de Lebesgue par translation,

les triangles BFC et AED ont la même aire. De plus, EFCD est un rectangle, d’aire |EF |.|ED|
par définition de la mesure de Lebesgue dans le plan, c’est-à-dire h.|AB|. Par additivité de la
mesure de Lebesgue, on obtient finalement A = λ(ABCD)+λ(BFC)−λ(AED) = λ(EFCD) =
h|AB|.

Notons B′ l’image de B par la rotation d’angle π
2 et de centre A. Alors

−−→
AB′ est ortho-

gonal à −→
AB et donc colinéaire à −−→

AD. Ainsi |⟨
−−→
AD,

−−→
AB′⟩| = h|AB′| = h|AB|. Dans le repère(

A,
−→
AB

|AB| ,
−−→
AB′

|AB′|

)
, si B a pour coordonnées (x1, y1) et D a pour coordonnées (x2, y2) alors les

coordonnées de B′ sont (−y1, x1) et finalement A = |x1y2 − x2y1| = | det(−→
AB,

−−→
AD)|.

Remarque 5.2. On peut aussi définir la notion de volume orienté d’un parallélotope dans Rn

à l’aide du déterminant et montrer que sa valeur absolue coïncide avec la mesure de Lebesgue.

Corollaire 5.3. Soit ABC un triangle. Son aire est égale à 1
2 | det(−→

AB,
−→
AC)|.

Démonstration. Si l’on note D = B + −→
AC alors ABCD est un parallélogramme et BDC est un

triangle semblable à ABC puisqu’ils partagent les trois même longueurs de côtés. Par additivité
de la mesure de Lebesgue, et le fait que l’aire de ABCD soit égale à | det(−→

AB,
−→
AC)|, on a le

résultat.
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Exercice 4. Soit A, B, C, D quatre points non coplanaires de l’espace. Montrer que le volume
du tétraèdre qu’ils définissent est hA

3 , où A est l’aire de l’une des faces et h est la hauteur
relative à cette face. En déduire que ce volume vaut 1

6 | det(−→
AB,

−→
AC,

−−→
AD)|.

6 Convexité
Dans cette section, E est un espace affine réel.

Définition 6.1. Soit A, B ∈ E. Le segment [AB] est

{Bar((A, t), (B, 1 − t)) | t ∈ [0, 1]}.

Une partie C de E est convexe lorsque ∀A, B ∈ C, [AB] ⊂ C.

Exemple 6.2.

1. Tout sous-espace affine de E est convexe.

2. Si H est un hyperplan affine de E , il existe une forme affine non nulle φ : E → R et a ∈ R
tels que H = φ−1({a}). Alors le demi-plan φ−1([a, +∞[) est convexe.

3. Si E est euclidien, une boule B(A, r) = {B ∈ Rn | |AB| < r} ⊂ Rn est convexe mais une
sphère S(A, r) = {B ∈ Rn | |AB| = r} ⊂ Rn n’est jamais convexe (pour r > 0).

Définition 6.3. Une combinaison convexe des points A1, . . . , An ∈ E est un barycentre de
A1, . . . , An avec des poids λ1, . . . , λn ∈ [0, 1] tels que ∑n

i=1 λi = 1.

Proposition 6.4. Soit C une partie de E. Alors C est convexe si et seulement si C est stable
par combinaisons convexes.

Proposition 6.5. Soit (Ci)i∈I une famille de parties convexes de E. Alors ⋂i∈I Ci est convexe.

Définition 6.6. Soit A une partie non vide de E. L’enveloppe convexe de A est

Conv(A) =
⋂

C convexe
A⊂C

C.

C’est la plus petite (au sens de l’inclusion) partie convexe de E contenant A.

Exemple 6.7.

1. Si A, B ∈ E alors Conv({A, B}) = [AB].

2. Si A, B, C ∈ E ne sont pas alignés alors Conv({A, B, C}) est un triangle plein.

Théorème 6.8 (Carathéodory). Supposons que E est de dimension n ∈ N∗ et soit A une partie
non vide de E. Alors pour tout point M ∈ Con(A), il existe n + 1 points A0, . . . , An tel que M
est combinaison convexe de A0, . . . , An.

Exercice 5. Soit A une partie compacte non vide de E de dimension n. Alors Conv(A) est
compacte.

Définition 6.9. Soit C un convexe de E. Un point x ∈ C est appelé point extrémal lorsque
C \ {x} est convexe. On note Ext(C) l’ensemble de ses points extrémaux.
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Exercice 6. Un convexe non vide admet-il toujours des points extrémaux ?

Exercice 7. Montrer qu’un point de C est extrémal si et seulement il ne peut s’exprimer comme
combinaison convexe stricte d’éléments de C, si et seulement s’il n’est le milieu d’aucune paire
de points distincts de C. En déduire que si f est une bijection affine et C est un convexe de E,
alors Ext(f(C)) = f(Ext(C)).

Définition 6.10. Soit P une partie non vide de E. On appelle groupe d’isométries de P,
et on note Is(P), l’ensemble des isométries affines f de E telles que f(P) = P.

Proposition 6.11. Si E est euclidien et P est une partie non vide de E alors Is(P) est un
groupe pour la composition et Is+(P) = Is(P) ∩ Is+(E) en est un sous-groupe distingué d’indice
au plus 2.

Théorème 6.12. Supposons que E est euclidien de dimension 3.

1. Si ∆ est un tétraèdre régulier alors Is(∆) ≃ S4 et Is+(∆) ≃ A4.

2. Si C est un cube de E alors Is(∆) ≃ S4 × Z/2Z et Is+(∆) ≃ S4.

Autres thèmes en rapport avec la convexité : fonctions convexes, hyperplan d’appui, théo-
rème de Hahn-Banach géométrique, projection dans les espaces de Hilbert, théorème de Markov-
Kakutani, théorème du point fixe de Schauder, théorème de Krein-Milman...

7 Exercices
Exercice 8. On considère le plan affine réel C muni de son repère affine orthonormé (0, 1, i).
Soit z1, z2, z3, z4 des point distincts de C.

1. Exprimer la longueur |z1z2|, la mesure d’angle orientée ẑ2z1z3.

2. Exprimer le produit scalaire ⟨−−→z1z2,
−−→z1z3⟩ et le déterminant det(1,i)(−−→z1z2,

−−→z3z4).

3. Montrer que z1, z2, z3 sont alignés si et seulement si z3−z1
z2−z1

∈ R.

4. Montrer que si z1, z2, z3, z4 ne sont pas alignés, alors ils sont sur un même cercle si et

seulement si le birapport

(
z1−z3
z1−z4

)
(

z2−z3
z2−z4

) est réel.

Exercice 9. Soit (E ,
−→
E ) un espace affine réel de dimension finie et K un compact de E d’in-

térieur non vide.

1. Montrer que le point
A + 1

λ(K)

∫
E

1K(x)−→Ax dλ(x)

a bien un sens et ne dépend pas du point A ∈ E. On appelle ce point le centre de K.

2. Montrer que le centre de K est invariant par les éléments f ∈ GA(E) tels que f(K) = K.

3. En déduire que {f ∈ GA(E) | f(K) = K} est un compact de GA(E).

Exercice 10. Soit (E ,
−→
E ) un espace affine euclidien et f : E → E qui préserve les distances.

On va montrer que f est affine, et donc est une isométrie de E. On fixe un point O ∈ E.
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1. Justifier que pour tout M, M ′ ∈ E, on a ⟨
−−→
OM,

−−→
OM ′⟩ = 1

2(|OM |2 + |OM ′|2 − |MM ′|2),
puis que ⟨

−−−−−−−→
f(O)f(M),

−−−−−−−→
f(O)f(M ′)⟩ = ⟨

−−→
OM,

−−→
OM ′⟩.

2. En déduire que l’application fO : −→u 7→
−−−−−−−−−−→
f(O)f(O + −→u ) préserve les normes dans −→

E .

3. Soit φ : −→
E → (−→E )′ définie par φ(−→u )(−→v ) = ⟨fO(−→u ), −→v ⟩. Montrer que φ est linéaire.

(Indication : Commencer par prendre −→v ∈ Vect(fO(−→E )) puis étudier ce qu’il se passe sur
l’orthogonal de ce sous-espace vectoriel.)

4. En utilisant l’isomorphisme canonique entre −→
E et (−→E )′ provenant de la structure eucli-

dienne, montrer que fO est linéaire et conclure.

Remarque. Le théorème de Mazur-Ulam énonce plus généralement que toute surjection iso-
métrique entre espaces vectoriels normées réels est affine.

Exercice 11. Soit (E ,
−→
E ) un plan euclidien et ABC un triangle non plat de E. On note O

le centre de son cercle circonscrit (dont on rappelle qu’il est le point d’intersection des média-
trices), G son isobarycentre (point d’intersection des médianes) et H son orthocentre (point
d’intersection des hauteurs).

1. Soit X le point tel que −−→
OX = −→

OA+−−→
OB +−→

OC. Montrer que −−→
AX = 2−→

OI, où I est le milieu
de [BC].

2. En déduire que X appartient à la hauteur hA issue de A.

3. De la même manière, X appartient aux hauteurs hB et hC issues de B et C respectivement.
En déduire que X = H.

4. Montrer que O, G et H sont alignés. La droite les contenant est appelée la droite d’Euler
de ABC.

Exercice 12. Soit (E ,
−→
E ) un plan euclidien orienté et ABC un triangle orienté non plat.

1. Justifier que l’aire délimitée par ABC vaut S = 1
2aha, où ha est la longueur |AI|, où I

est le point d’intersection entre la hauteur issue de A et le côté [BC].

2. Montrer que sin ÂBI = sin β.

3. En déduire que ha = c sin β.

4. On a donc S = 1
2ac sin β, et de même S = 1

2ab sin γ = 1
2bc sin α. Retrouver la loi des

sinus.

5. Exprimer cos α à l’aide du théorème d’Al-Kashi.

6. En utilisant que cos2 α + sin2 α = 1, obtenir une formule pour S ne faisant intervenir que
les longueurs a, b et c.

Remarque. En posant p = a+b+c
2 le demi-périmètre de ABC, on peut réécrire cela sous la

forme S =
√

p(p − a)(p − b)(p − c) (formule de Héron).

Exercice 13. Soit ABC un triangle non aplati d’un plan euclidien (E ,
−→
E ).
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1. Soit A′ le projeté orthogonal de A sur (BC). Exprimer les coordonnées barycentriques de
A′ dans le repère (B, C).

2. Les formules pour les projetés orthogonaux B′ et C ′ de B sur (AC) et C sur (AB) respec-
tivement sont symétriques. En déduire que les coordonnées barycentriques de l’orthocentre
de ABC dans le repère (A, B, C) sont (tan α : tan β : tan γ).

3. Soit I, J, K les milieux respectifs de [BC], [AC] et [AB]. Montrer que les médiatrices de
ABC sont les hauteurs de IJK.

4. En déduire que les coordonnées barycentriques du centre du cercle circonscrit à ABC dans
le repère (I, J, K) sont (2 tan α : 2 tan β : 2 tan γ).

5. Montrer que les coordonnées barycentriques du centre du cercle circonscrit à ABC dans
le repère (A, B, C) sont (tan β + tan γ : tan α + tan γ : tan α + tan β).

Exercice 14. 1. Montrer que les sous-groupes finis de SO2(R) sont cycliques. A quel groupes
d’isométries positives correspondent-ils ?

2. Montrer que les sous-groupes finis de O2(R) sont soit cycliques, soit diédraux.

Exercice 15. Soit G un sous-groupe fini de SO3(R) d’ordre n ≥ 2.

1. Si g ∈ G \ {id}, justifier que g possède deux points fixes sur la sphère unité S2.

2. On note X l’ensemble de ces points fixes. Justifier que 2 ≤ |X| ≤ 2(n − 1) et que X est
stable par G.

3. Démontrer que le nombre d’orbites pour l’action de G sur X est 2 ou 3.

4. Montrer que si le nombre d’orbite est 2 alors ces orbites sont triviales et G est cyclique.

5. Supposons maintenant qu’il y a trois orbites X1, X2 et X3. Montrer que G n’est pas cy-
clique, puis en notant n1 ≤ n2 ≤ n3 les cardinaux des stabilisateurs des orbites de X1, X2
et X3 respectivement, montrer que 1

n1
+ 1

n2
+ 1

n3
= 1 + 2

n
.

6. En déduire que n1 = 2, (n2, n3) ∈
{(

2, n
2

)
, (3, 3), (3, 4), (3, 5)

}
.

7. Dans le cas où (n2, n3) =
(
2, n

2

)
, montrer que G ≃ Dn/2.

8. Dans le cas où (n2, n3) = (3, 3), montrer que n = 12. En considérant l’action de G sur
X2, montrer que G ≃ A4.

9. Dans le cas où (n2, n3) = (3, 4), montrer que n = 24. Montrer que G agit sur les paires
de points opposés dans X2 et montrer que G ≃ S4.

10. Dans le cas où (n2, n3) = (3, 5), montrer que n = 60, puis déterminer les sous-groupes de
G. En déduire G ≃ A5 (on pourra admettre qu’un groupe simple d’ordre 60 est isomorphe
à A5).

Remarque. La classification ci-dessus correspond à la liste des solides platoniciens, c’est-à-dire
des polyèdres réguliers convexes dans l’espace. Le groupe A4 est le groupe d’isométries positives
du tétraèdre, S4 est le groupe d’isométries positives du cube et de son dual l’octaèdre, et A5
est le groupe d’isométries positives de l’icosaèdre et de son dual le dodécahèdre.
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