
ENS Paris-Saclay 2025-2026 Préparation à l’agrégation
A. Bailleul Cours-TD de théorie des groupes

Groupes finis remarquables

Dans cette feuille, on s’intéresse à des familles de groupes finis usuels.

1 Groupes cycliques et racines de l’unité
Lemme 1.1. Soit n ∈ N∗. Alors

n =
∑
d|n

φ(d)

où φ(d) est l’indicatrice d’Euler de d.
Démonstration. Pour tout diviseur d de n, Z/nZ admet un unique sous-groupe d’ordre d. En
effet, ses sous-groupes correspondent aux sous-groupes de Z contenant nZ, et le seul tel sous-
groupe H de Z tel que H/nZ soit d’ordre d est (n/d)Z.

Il y a donc exactement φ(d) éléments d’ordre d dans Z/nZ puisque ceux-ci engendrent le
même sous-groupe d’ordre d. En partitionnant Z/nZ selon les ordres de ses éléments, on obtient
le résultat.
Théorème 1.2. Soit G un groupe fini d’ordre n. Alors G est cyclique si et seulement si pour
tout diviseur d de n, G admet au plus un sous-groupe d’ordre d.
Démonstration. On a déjà fait l’implication directe ci-dessus.

Réciproquement, soit G un groupe d’ordre n tel que pour tout diviseur d de n, G admet au
plus un sous-groupe d’ordre d. Si d est un diviseur de n, notons N(d) le nombre d’éléments de
G d’ordre d. Si N(d) ̸= 0, alors N(d) = φ(d). En effet, un élément d’ordre d engendre un sous-
groupe d’ordre d de G, qui est cyclique, donc admet φ(d) générateurs, et ces φ(d) générateurs
sont exactement les éléments d’ordre d puisque le sous-groupe en question est unique. On a
donc

n =
∑
d|n

N(d) ≤
∑
d|n

φ(d) = n,

d’où N(d) = φ(d) pour tout d | n. En particulier, N(n) = φ(n) > 0.
Corollaire 1.3. Soit K un corps et G un sous-groupe fini de K×. Alors G est cyclique.
Démonstration. D’après le théorème de Lagrange, tout élément x de G vérifie x|G| = 1. Pour
tout diviseur d de |G|, il y a au plus d racines dans K du polynôme Xd−1 (division euclidienne),
puisque K est un corps. Ainsi, s’il existe un sous-groupe de G d’ordre d, celui-ci est unique, ses
éléments étant précisément les racines de Xd − 1.
Remarque 1.4. La commutativité du corps est essentielle ci-dessus. Par exemple, le groupe
non abélien H8 est un sous-groupe fini du groupe des inversibles de l’algèbre des quaternions.
Proposition 1.5. Soit n ≥ 1. L’ensemble Un des racines n-ièmes de l’unité dans C est cyclique
d’ordre n. Ses éléments sont les e

2iπk
n avec 0 ≤ k ≤ n − 1.

!△ Même dans un corps algébriquement clos, les racines n-ièmes de l’unité ne sont pas néces-
sairement au nombre de n.
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2 Groupes abéliens finis
Définition 2.1. Soit G un groupe dont tous les éléments sont d’ordre fini (par exemple un
groupe fini). L’exposant de G est le PPCM des ordres des éléments de G.

Exemple 2.2.

1. Pour tout n ∈ N∗, l’exposant de Z/nZ est n.

2. L’exposant de S5 est 30.

3. L’exposant de U, le groupe des racines de l’unité dans C, est infini.

Théorème 2.3 (de structure des groupes abéliens finis). Soit G un groupe abélien fini. Il existe
une unique famille (d1, . . . , dr) ∈ Nr telle que d1 | d2 | · · · | dr et

G ≃ Z/d1Z × . . .Z/drZ.

Remarque 2.4.

1. Plus généralement, le théorème de structure des groupes abéliens de type fini dit qu’un tel
groupe a la forme ci-dessus, avec éventuellement un facteur Zr, où r ∈ N, supplémentaire.
L’entier r est alors appelé le rang du groupe.

2. Ce résultat peut être démontré à l’aide du théorème de structure des modules de
type fini sur les anneaux principaux (qui dépasse le cadre du programme mais qu’il
est bon de connaître) car les groupes abéliens sont exactement les Z-modules. De la
même manière, la décomposition de Frobenius d’un endomorphisme en est également une
application, car un tel endomorphisme fait de son espace vectoriel un K[X]-module de
type fini.

3. À cause des relations de divisibilité, il est clair que dr est l’exposant de G. Pour démarrer
la démonstration, on va donc établir qu’il existe un élément qui a pour ordre l’exposant
du groupe.

Lemme 2.5. Soit G un groupe abélien fini d’exposant N . Alors il existe g ∈ G d’ordre N .

Démonstration. Il suffit de montrer que si m et n sont premiers entre eux et x, y ∈ G sont
d’ordres m et n respectivement, alors G admet un élément d’ordre mn. En effet, si pr est la
puissance exacte du nombre premier p divisant N , alors il existe un élément g ∈ G d’ordre un
entier d divisible exactement par pr. Alors gd/pr est d’ordre pr et la propriété du début permet
de construire un élément d’ordre N par récurrence sur le nombre de facteurs premiers de N .

Soit donc x, y ∈ G d’ordres m et n respectivement, avec m et n premiers entre eux. Alors xy
est d’ordre mn. En effet, puisque m et n sont premiers entre eux, on a ⟨x⟩∩⟨y⟩ = {e} d’après le
théorème de Lagrange. Si (xy)k = xkyk = e pour un certain k ∈ Z alors on a xk = y−k ∈ ⟨x⟩∩⟨y⟩
donc xk = yk = e. Par définition, cela veut dire que m | k et n | k. Comme m et n sont premiers
entre eux, le lemme de Gauss montre que mn | k. Réciproquement, (xy)mn = xmnymn = e, donc
xy est bien d’ordre mn.

Pour poursuivre la démonstration, nous utiliserons la notion de dual d’un groupe abélien.

Définition 2.6. Soit G un groupe abélien. Le dual de G est

Ĝ = {χ : G → C× morphisme de groupes}.
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Lemme 2.7. Soit G un groupe abélien fini et H un sous-groupe de G. Alors tout morphisme
de groupes χ : H → C× s’étend en un morphisme de groupes χ̃ : G → C×. Autrement dit, le
morphisme de restriction Ĝ → Ĥ est surjectif.

Démonstration. Montrons le résultat par récurrence sur l’indice [G : H]. Si [G : H] = 1 il n’y
a rien à montrer. Supposons le résultat quand l’indice est inférieur ou égal à n et supposons
[G : H] = n + 1 > 1. Soit χ ∈ Ĥ, g ∈ G \ H tel que g soit d’ordre d dans G/H et notons
H̃ = ⟨H, g⟩. Remarquons que, puisque G est abélien, tout élément de H̃ s’écrit (de manière non
unique en général) sous la forme hgk avec h ∈ H et 0 ≤ k < d. On définit χ̃ ∈ ˆ̃H de la manière
suivante : pour tout h ∈ H et k ∈ Z,

χ̃(hgk) = χ(h)ωk,

où ω est une racine d-ième de l’unité dans C. On vérifie que cette définition ne dépend pas du
choix d’écriture hgk et que χ̃ est bien un morphisme de groupes. Par hypothèse de récurrence,
puisque [G : H̃] < [G : H] = n + 1, on peut étendre χ̃ en un élément de Ĝ.

Démonstration du théorème de structure des groupes abéliens finis. Nous allons faire une ré-
currence sur l’ordre du groupe. Si |G| = 1 il n’y a rien à prouver. Supposons le résultat pour
des groupes abéliens finis d’ordres strictement inférieurs à |G| et que G est d’exposant N > 1.
D’après le Lemme 2.5, soit g ∈ G d’ordre N et notons H = ⟨g⟩. Soit χ ∈ Ĥ défini par
χ(gk) = e

2ikπ
N . Il est clair que χ est un isomorphisme entre H et UN . D’après le Lemme 2.7,

on peut étendre χ en un caractère χ̃ ∈ Ĝ. Alors on a G ≃ ker χ̃ × ⟨g⟩. En effet, puisque G est
d’exposant N , on a xN = e pour tout élément x ∈ G et donc χ̃(x)N = 1, autrement dit, χ̃ est
à valeurs dans UN = χ(H). Maintenant, si x ∈ G, alors il existe un unique k ∈ {0, . . . , N − 1}
tel que χ̃(x) = χ(gk) et donc xg−k ∈ ker χ̃. Comme G est abélien, les sous-groupes H et ker χ̃
satisfont bien les propriétés caractérisant un produit direct interne.

Finalement, il est clair que H ≃ Z/NZ, et l’hypothèse de récurrence appliquée à ker χ̃ donne
l’existence. Les relations divisibilité viennent du fait que l’exposant de ker χ̃ divise l’exposant
de G qui est N .

L’unicité est fastidieuse (et peu intéressante).

Corollaire 2.8. Soit G un groupe abélien fini d’ordre n et d un diviseur de n. Alors G admet
un sous-groupe d’ordre d.

Démonstration. D’après le théorème de structure des groupes abéliens finis, il existe des entiers
d1, . . . , dr tels que d1 | · · · | dr et

G ≃ Z/d1Z × · · · × Z/drZ.

En particulier,
n =

r∏
i=1

di.

Notons
n =

s∏
i=1

pαi
i

la décomposition en facteurs premiers de n. Puisque d est un diviseur de n, ses facteurs premiers
sont parmi p1, . . . , ps et pour 1 ≤ i ≤ s, βi = vpi

(d) ≤ vpi
(n) = αi. Pour 1 ≤ i ≤ s, on a

vpi
(n) = ∑r

j=1 vpi
(dj) et donc il existe ji ∈ {1, . . . , r} maximal tel que vpi

(d) ≤ ∑ji
j=1 vpi

(dj). Si
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on note ki = ∑ji
j=1 vpi

(dj) − βi, alors Z/d1Z × · · · × Z/dji
Z contient un sous-groupe Hi d’ordre

pβi
i , de la forme Z/p

vpi (d1)
i Z × · · · × Z/p

vpi (dji
−1)

i × Z/p
vpi (dji

)−ki

i Z. Finalement, puisque G est
abélien, la caractérisation des produits directs internes donne que G contient un sous-groupe
isomorphe à ∏s

i=1 Hi, d’ordre d.

3 Groupes diédraux
Définition 3.1. Soit n ≥ 2. Le groupe diédral Dn d’indice n est le groupe des isométries
préservant un polygone régulier à n côtés.

Proposition 3.2. Pour tout n ≥ 2, Dn est un groupe d’ordre 2n, isomorphe au groupe engendré
par la matrice de rotation

R =
cos

(
2π
n

)
− sin

(
2π
n

)
sin

(
2π
n

)
cos

(
2π
n

) 
et la matrice de symétrie

S =
(

1 0
0 −1

)
.

On a D2 ≃ (Z/2Z)2 et pour n ≥ 3, Dn est non abélien.

Démonstration. Un peu de géométrie ne fait jamais de mal : Les sommets du polygone sont ses
points extrémaux (milieux d’aucune paire de points). Une injection affine préservant les points
extrémaux, les éléments de Dn permutent les n sommets du polygone. Quitte à conjuguer par
une translation, on peut supposer que le polygone est centré en 0. Ce centre étant l’isobarycentre
des sommets du polygone, celui-ci est laissé fixe par les éléments de Dn, et on peut donc les
voir comme des applications linéaires. Appelons A0, . . . , An−1 les n sommets du polygone dans
l’ordre. Les vecteurs −−→

OA0 et −−→
OA1 formant une base de R2, on en déduit qu’un élément de Dn est

entièrement déterminé par les images de A0 et A1. Maintenant, comme les isométries préservent
les distances, les éléments de Dn envoient deux sommets successifs sur deux sommets successifs,
et il y a donc au plus 2n éléments dans Dn, envoyant (A0, A1) sur (Ai, Ai+1) pour 1 ≤ i ≤ n, et
(A0, A1) sur (Ai, Ai−1). Finalement, il y en a exactement 2n puisque Ri et RiS répondent au
cahier des charge. On obtient alors l’isomorphisme voulu, et le fait que Dn est engendré par R
et S. Enfin, pour n = 2, RS = SR−1 = SR donc R et S commutent, et S, R et RS sont d’ordre
2, d’où D2 ≃ (Z/2Z)2. Pour n ≥ 3, RS = SR−1 ̸= SR et donc Dn est non abélien.

Exercice 1. Montrer que D3 ≃ S3.

4 Exercices
Exercice 2. Déterminer tous les groupes abéliens d’ordre 720.

Exercice 3. Combien existe-t-il de groupes abéliens d’ordre pn, où p est un nombre premier et
n ∈ N∗ ? En déduire une formule pour le nombre de groupes abéliens d’ordre n ∈ N∗.

Exercice 4. 1. Soit n ∈ N∗. Montrer que Ẑ/nZ ≃ Z/nZ.

2. Soit G et H des groupes abéliens. Montrer quue Ĝ × H ≃ Ĝ × Ĥ.

3. Soit G un groupe abélien fini. Montrer que G ≃ Ĝ.
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4. Montrer également que ˆ̂
G ≃ G sans passer par un isomorphisme G ≃ Ĝ. (Indication :

S’inspirer de la dualité des espaces vectoriels de dimension finie.)

Exercice 5. Est-ce que le groupe U des racines de l’unité dans C est égal au cercle unité S1 ?
Montrer que S1 ≃ R/Z. Donner une description similaire de U.

Exercice 6. Montrer que D4 et H8 sont des groupes non abéliens d’ordre 8 non isomorphes et
que ce sont les seuls groupes non abéliens d’ordre 8.

Exercice 7. Pour n ≥ 3, déterminer Z(Dn), D(Dn) et les classes de conjugaison de Dn.

Exercice 8. Pour tout n ≥ 2, montrer que Dn ≃ Z/nZ ⋊φ Z/2Z pour un morphisme φ :
Z/2Z → Aut(Z/nZ) à déterminer.

Exercice 9. Soit p un nombre premier.

1. Donner tous les groupes abéliens d’ordre p3.

2. Soit G un groupe non abélien d’ordre p3. Montrer que Z(G) = D(G) ≃ Z/pZ et G/D(G) ≃
(Z/pZ)2.

3. On définit

Ap =
{(

1 + pm a
0 1

)
∈ M2(Z/p2Z) | a ∈ Z/p2Z, m ∈ Z/pZ

}

et

Hp =


1 x z

0 1 y
0 0 1

 | x, y, z ∈ Z/pZ


Montrer que Ap et Hp sont des groupes non abéliens d’ordre p3.

4. Soit S =
(

1 + p 0
0 1

)
et T =

(
1 1
0 1

)
. Calculer [S, T ] et montrer que Ap est engendré par

S et T . Exprimer Ap sous forme de produit semi-direct.

5. Soit A =

1 1 0
0 1 0
0 0 1

 et B =

1 0 0
0 1 1
0 0 1

. Calculer [A, B] et montrer que Hp est engendré

par A et B. Montrer que tout élément non trivial de Hp est d’ordre p. En déduire que
Hp ̸≃ Ap quand p ̸= 2.

6. Montrer que A2 ≃ H2 ≃ D4.

Remarque. On peut montrer que, pour p premier impair, tout groupe d’ordre p3 est isomorphe
à Ap ou Hp.

Exercice 10. Soit p un nombre premier. Un p-groupe abélien élémentaire est un groupe
abélien fini G tel que gp = e pour tout g ∈ G.

1. Montrer de deux manières différentes qu’un p-groupe abélien élémentaire est de la forme
(Z/pZ)n pour un certain entier n ∈ N.

2. Soit G un p-groupe abélien élémentaire. Déterminer Aut(G).
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Exercice 11. Soit G un groupe fini. On appelle sous-groupe maximal de G tout sous-groupe
strict de G, maximal pour l’inclusion, et on note Φ(G) l’intersection des sous-groupes maximaux
de G.

1. Déterminer Φ(G) dans les cas suivants : G = Z/nZ, G = S3, G = H8.

2. Montrer que Φ(G) est un sous-groupe distingué de G.

3. Montrer que les éléments de Φ(G) sont exactement les éléments superflus de G, c’est-
à-dire les g ∈ G tels que pour toute partie S ⊂ G, si ⟨S, g⟩ = G alors ⟨S⟩ = G.

4. Supposons que G est un p-groupe fini pour un certain nombre premier p. Montrer que
chaque sous-groupe maximal de G est distingué dans G. (Indication : Faire agir G, puis
un sous-groupe maximal de G, par conjugaison sur l’ensemble des sous-groupes maximaux
de G.)

5. En déduire que G/Φ(G) est abélien et conclure que c’est un p-groupe abélien élémentaire.

Exercice 12. Soit G un groupe fini résoluble. Montrer qu’il existe une famille de sous-groupes
(Gi)0≤i≤r telle que G0 = {e}, Gr = G, Gi ◁ Gi+1 et Gi+1/Gi est cyclique pour 0 ≤ i < r. On dit
qu’un tel groupe est polycyclique.

Exercice 13. Soit G un groupe fini. On dit qu’il est nilpotent lorsque ses sous-groupes de
Sylow sont distingués dans G.

1. Montrer qu’un groupe abélien est nilpotent et qu’un p-groupe est nilpotent.

2. Montrer qu’un groupe nilpotent est produit direct de ses sous-groupes de Sylow.

3. En déduire que le centre d’un groupe nilpotent G est non trivial, et que si G est d’ordre
n et d est un diviseur de n, alors G admet un sous-groupe d’ordre d.

4. Montrer qu’un groupe nilpotent est résoluble. Montrer que la réciproque est fausse.

5. Pour quelles valeurs de n ≥ 2 les groupes An,Sn, Dn sont-ils nilpotents ? Résolubles ?

Remarque. La terminologie vient du fait que si N est un sous-anneau nilpotent d’un anneau
unitaire A, alors 1 + N est un groupe multiplicatif nilpotent. Ainsi, le groupe des matrices
unipotentes (triangulaires supérieures avec des 1 sur la diagonale) de taille n×n sur un anneau
unitaire quelconque est nilpotent.

Exercice 14 (Le boss final). Classifier tous les groupes d’ordre au plus 15.

Ordre du groupe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Nombre de groupes 1 1 1 2 1 2 1 5 2 1 1 5 1 2 1

Remarque. Il y a 14 groupes d’ordre 16, dont des horreurs du style ⟨a, x, y | a4 = y4 = x2 =
e, a2 = y2, xax = a−1, ay = ya, xy = yx⟩ qui ne peut s’écrire comme un produit semi-direct, on
ne s’amusera donc pas à les classifier.
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