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Groupes finis remarquables

Dans cette feuille, on s’intéresse a des familles de groupes finis usuels.

1 Groupes cycliques et racines de 'unité

Lemme 1.1. Soit n € N*. Alors
n=>_¢(d)
din
ot p(d) est Uindicatrice d’Euler de d.

Démonstration. Pour tout diviseur d de n, Z/nZ admet un unique sous-groupe d’ordre d. En
effet, ses sous-groupes correspondent aux sous-groupes de Z contenant nZ, et le seul tel sous-
groupe H de Z tel que H/nZ soit d’ordre d est (n/d)Z.

Il y a donc exactement ¢(d) éléments d’ordre d dans Z/nZ puisque ceux-ci engendrent le
méme sous-groupe d’ordre d. En partitionnant Z/nZ selon les ordres de ses éléments, on obtient
le résultat. O

Théoréme 1.2. Soit G un groupe fini d’ordre n. Alors G est cyclique si et seulement si pour
tout diviseur d de n, G admet au plus un sous-groupe d’ordre d.

Démonstration. On a déja fait I'implication directe ci-dessus.

Réciproquement, soit G un groupe d’ordre n tel que pour tout diviseur d de n, G admet au
plus un sous-groupe d’ordre d. Si d est un diviseur de n, notons N(d) le nombre d’éléments de
G d’ordre d. Si N(d) # 0, alors N(d) = ¢(d). En effet, un élément d’ordre d engendre un sous-
groupe d’ordre d de G, qui est cyclique, donc admet ¢(d) générateurs, et ces ¢(d) générateurs
sont exactement les éléments d’ordre d puisque le sous-groupe en question est unique. On a

donc
n=> N(d) <> ¢(d=n,
dn dn
d’ott N(d) = p(d) pour tout d | n. En particulier, N(n) = ¢(n) > 0. O

Corollaire 1.3. Soit K un corps et G un sous-groupe fini de K*. Alors G est cyclique.

Démonstration. D’apres le théoreme de Lagrange, tout élément z de G vérifie /¢ = 1. Pour
tout diviseur d de |G|, il y a au plus d racines dans K du polynéme X?—1 (division euclidienne),
puisque K est un corps. Ainsi, s’il existe un sous-groupe de G' d’ordre d, celui-ci est unique, ses
éléments étant précisément les racines de X — 1. O

Remarque 1.4. La commutativité du corps est essentielle ci-dessus. Par exemple, le groupe
non abélien Hyg est un sous-groupe fini du groupe des inversibles de I'algebre des quaternions.

Proposition 1.5. Soit n > 1. L’ensemble U,, des racines n-iemes de ['unité dans C est cyclique
2imk
d’ordre n. Ses éléments sont les e ™ avec 0 < k <n—1.

/N Méme dans un corps algébriquement clos, les racines n-ieémes de I'unité ne sont pas néces-
sairement au nombre de n.



2 Groupes abéliens finis

Définition 2.1. Soit G un groupe dont tous les éléments sont d’ordre fini (par exemple un
groupe fini). L’exposant de G est le PPCM des ordres des éléments de G.

Exemple 2.2.
1. Pour tout n € N*, I'exposant de Z/nZ est n.
2. L’exposant de G5 est 30.
3. L’exposant de U, le groupe des racines de 1'unité dans C, est infini.

Théoréme 2.3 (de structure des groupes abéliens finis). Soit G un groupe abélien fini. Il existe
une unique famille (dy,...,d,) € N" telle que dy | dy | --- | d, et

G~Z/dZx .. Z]dZ.
Remarque 2.4.

1. Plus généralement, le théoréme de structure des groupes abéliens de type fini dit qu’un tel
groupe a la forme ci-dessus, avec éventuellement un facteur Z", ou r € N, supplémentaire.
L’entier r est alors appelé le rang du groupe.

2. Ce résultat peut étre démontré a l'aide du théoreme de structure des modules de
type fini sur les anneaux principaux (qui dépasse le cadre du programme mais qu’il
est bon de connaitre) car les groupes abéliens sont exactement les Z-modules. De la
méme maniere, la décomposition de Frobenius d’un endomorphisme en est également une
application, car un tel endomorphisme fait de son espace vectoriel un K[X]-module de
type fini.

3. A cause des relations de divisibilité, il est clair que d, est Pexposant de G. Pour démarrer
la démonstration, on va donc établir qu’il existe un élément qui a pour ordre I’exposant
du groupe.

Lemme 2.5. Soit G un groupe abélien fini d’exposant N. Alors il existe g € G d’ordre N.

Démonstration. 11 suffit de montrer que si m et n sont premiers entre eux et x,y € G sont
d’ordres m et n respectivement, alors G admet un élément d’ordre mn. En effet, si p” est la
puissance exacte du nombre premier p divisant N, alors il existe un élément g € G d’ordre un
entier d divisible exactement par p". Alors g%/?" est d’ordre p” et la propriété du début permet
de construire un élément d’ordre N par récurrence sur le nombre de facteurs premiers de V.
Soit donc x,y € G d’ordres m et n respectivement, avec m et n premiers entre eux. Alors xy
est d’ordre mn. En effet, puisque m et n sont premiers entre eux, on a (z) N (y) = {e} d’apres le
théoréme de Lagrange. Si (zy)* = 2*y* = e pour un certain k € Z alors on a 2% = y=* € ()N {y)

donc % = y* = e. Par définition, cela veut dire que m | k et n | k. Comme m et n sont premiers
entre eux, le lemme de Gauss montre que mn | k. Réciproquement, (xy)™" = 2™"y™" = e, donc
xy est bien d’ordre mn. O

Pour poursuivre la démonstration, nous utiliserons la notion de dual d'un groupe abélien.

Définition 2.6. Soit G un groupe abélien. Le dual de G est

G = {x : G — C* morphisme de groupes}.
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Lemme 2.7. Soit G un groupe abélien fini et H un sous-groupe de G. Alors tout morphisme
de groupes x : H — C* s’étend en un morphisme de groupes x : G — C*. Autrement dit, le
morphisme de restriction G — H est surjectif.

Démonstration. Montrons le résultat par récurrence sur l'indice [G : H|. Si [G : H] =1 il n'y
a rien & montrer. Supposons le résultat quand l'indice est inférieur ou égal a n et supposons
[G:H =n+1>1 Soit y € H g e G\ H tel que g soit d’ordre d dans G/H et notons
H= (H, g). Remarquons que, puisque G est abélien, tout élément de H s’écrit (de maniére non

unique en général) sous la forme hg® avec h € H et 0 < k < d. On définit | € H de la maniére
suivante : pour tout h € H et k € Z,

X(hg*) = x(h)w",

ol w est une racine d-ieme de 'unité dans C. On vérifie que cette définition ne dépend pas du
choix d’écriture hg" et que ¥ est bien un morphisme de groupes. Par hypothese de récurrence,
puisque [G : H| < [G: H| = n+ 1, on peut étendre \ en un élément de G. ]

Démonstration du théoreme de structure des groupes abéliens finis. Nous allons faire une ré-
currence sur 'ordre du groupe. Si |G| = 1 il n’y a rien a prouver. Supposons le résultat pour
des groupes abéliens finis d’ordres strictement inférieurs a |G| et que G est d’exposant N > 1.
D’apres le Lemme 2.5, soit ¢ € G d’ordre N et notons H = (g). Soit y € H défini par
x(g*) = e*N . 11 est clair que x est un isomorphisme entre H et Uy. D’apres le Lemme 2.7,
on peut étendre y en un caractere y € G. Alors on a G ~ ker X X (g). En effet, puisque G est
d’exposant N, on a 2V = e pour tout élément x € G et donc x(x)" = 1, autrement dit, Y est
a valeurs dans Uy = x(H). Maintenant, si = € G, alors il existe un unique k£ € {0,..., N — 1}
tel que (z) = x(g*) et donc zg~* € ker . Comme G est abélien, les sous-groupes H et ker ¥
satisfont bien les propriétés caractérisant un produit direct interne.

Finalement, il est clair que H ~ Z/NZ, et ’hypothese de récurrence appliquée a ker Y donne
Iexistence. Les relations divisibilité viennent du fait que 'exposant de ker x divise I'exposant
de G qui est N.

L’unicité est fastidieuse (et peu intéressante). ]

Corollaire 2.8. Soit G un groupe abélien fini d’ordre n et d un diviseur de n. Alors G admet
un sous-groupe d’ordre d.

Démonstration. D’apres le théoreme de structure des groupes abéliens finis, il existe des entiers
di,...,d, telsqued; | ---|d, et

G~7Z/dZ x - x Z)d,Z.

En particulier,
T

=1

Notons 5
n=|]p"
i=1

la décomposition en facteurs premiers de n. Puisque d est un diviseur de n, ses facteurs premiers

sont parmi py,...,ps et pour 1 < i <5, f; = vy,(d) < vp(n) = ;. Pour 1 < i < 5, 0na
vp, (1) = 251 vp,(dy) et donc il existe j; € {1,...,r} maximal tel que vy, (d) < Y72, vy, (d;). Si



on note k; = Zg';l vy, (d;) — By, alors Z/d\Z x - - - x Z/d;,Z contient un sous-groupe H; d’ordre

PP, de la forme Z/pf”i(dl)Z X oo X Z/pfpi(d“_l) X Z/pfpi(d“)_kiZ. Finalement, puisque G est
abélien, la caractérisation des produits directs internes donne que G contient un sous-groupe
isomorphe a [[7_, H;, d’ordre d. ]

3 Groupes diédraux

Définition 3.1. Soit n > 2. Le groupe diédral D, d’indice n est le groupe des isométries
préservant un polygone réqulier a n cotés.

Proposition 3.2. Pour toutn > 2, D,, est un groupe d’ordre 2n, isomorphe au groupe engendré

par la matrice de rotation
R (cos (%) —sin (2:))

sin (2—“> CcoS (2—”)
n n

s=(o 4)

On a Dy ~ (Z/27)* et pour n > 3, D, est non abélien.

et la matrice de symétrie

Démonstration. Un peu de géométrie ne fait jamais de mal : Les sommets du polygone sont ses
points extrémaux (milieux d’aucune paire de points). Une injection affine préservant les points
extrémaux, les éléments de D,, permutent les n sommets du polygone. Quitte a conjuguer par
une translation, on peut supposer que le polygone est centré en 0. Ce centre étant l'isobarycentre
des sommets du polygone, celui-ci est laissé fixe par les éléments de D,,, et on peut donc les
voir comme des applications linéaires. Appelons Ag, ..., A, 1 les n sommets du polygone dans
I'ordre. Les vecteurs OAg et OA; formant une base de R?, on en déduit qu'un élément de D,, est
entierement déterminé par les images de Ag et A;. Maintenant, comme les isométries préservent
les distances, les éléments de D,, envoient deux sommets successifs sur deux sommets successifs,
et il y a donc au plus 2n éléments dans D,,, envoyant (Ag, Ay) sur (A4;, A;41) pour 1 <i < n, et
(Ag, Ay) sur (A;, A;_1). Finalement, il y en a exactement 2n puisque R’ et R'S répondent au
cahier des charge. On obtient alors I'isomorphisme voulu, et le fait que D,, est engendré par R
et S. Enfin, pour n = 2, RS = SR™! = SR donc R et S commutent, et S, R et RS sont d’ordre
2, d’ott Dy =~ (Z/27Z)*. Pour n > 3, RS = SR™! # SR et donc D,, est non abélien. O

Exercice 1. Montrer que D3 ~ Gs.

4 Exercices

Exercice 2. Déterminer tous les groupes abéliens d’ordre 720.

Exercice 3. Combien existe-t-il de groupes abéliens d’ordre p", ot p est un nombre premier et
n € N* ¢ En déduire une formule pour le nombre de groupes abéliens d’ordre n € N*.

Exercice 4. 1. Soit n € N*. Montrer que W ~ Z/nZ.

2. Soit G et H des groupes abéliens. Montrer quue G X H ~ G x H.

3. Soit G un groupe abélien fini. Montrer que G ~ G.
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4. Montrer également que G ~ G sans passer par un isomorphisme G ~ G. (Indication :
S’inspirer de la dualité des espaces vectoriels de dimension finie.)

Exercice 5. Est-ce que le groupe U des racines de 'unité dans C est égal au cercle unité S* 2
Montrer que S' ~ R/Z. Donner une description similaire de U.

Exercice 6. Montrer que Dy et Hg sont des groupes non abéliens d’ordre 8 non isomorphes et
que ce sont les seuls groupes non abéliens d’ordre 8.

Exercice 7. Pour n > 3, déterminer Z(D,,), D(D,,) et les classes de conjugaison de D,,.

Exercice 8. Pour tout n > 2, montrer que D,, ~ Z/nZ X, Z/2Z pour un morphisme ¢ :
7.)27 — Aut(Z/nZ) a déterminer.

Exercice 9. Soit p un nombre premier.
1. Donner tous les groupes abéliens d’ordre p3.

2. Soit G un groupe non abélien d’ordre p*. Montrer que Z(G) = D(G) ~ Z/pZ et G/ D(G) =~
(Z/pZ)*.

3. On définit

A, = {(1 +0pm ff) € Mo(Z/p*Z) | a € Z)p*Z,m € Z/pZ}

z
yl||z,y,2€Z/pZ
00 1

1
H, = 0

p

Montrer que A, et H, sont des groupes non abéliens d’ordre p®.

0 1 01
S et T. Exprimer A, sous forme de produit semi-direct.

4. Soit S = L+p 0) et T = (1 ! . Calculer [S,T] et montrer que A, est engendré par

110 1 00
5. 80t A=(0 1 0| eteB=|[0 1 1|. Calculer [A, B] et montrer que H, est engendré
0 01 0 01

s

par A et B. Montrer que tout élément non trivial de H, est d’ordre p. En déduire que
H, % A, quand p # 2.

6. Montrer que Ay >~ Hy ~ Dy.

Remarque. On peut montrer que, pour p premier impair, tout groupe d’ordre p? est isomorphe
a A, ou H,.

Exercice 10. Soit p un nombre premier. Un p-groupe abélien élémentaire est un groupe
abélien fini G tel que gP = e pour tout g € G.

1. Montrer de deux manieres différentes qu’un p-groupe abélien élémentaire est de la forme
(Z/pZ)™ pour un certain entier n € N,

2. Soit G un p-groupe abélien élémentaire. Déterminer Aut(G).
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Exercice 11. Soit G un groupe fini. On appelle sous-groupe maximal de G tout sous-groupe
strict de G, mazimal pour l'inclusion, et on note ®(G) lintersection des sous-groupes mazimauz

de GG.
1.

2.

5.

Déterminer ®(G) dans les cas suivants : G = Z/nZ,G = &3,G = Hs.
Montrer que ®(G) est un sous-groupe distingué de G.

Montrer que les éléments de ®(G) sont exactement les éléments superflus de G, c’est-
a-dire les g € G tels que pour toute partie S C G, si (S, g) = G alors (S) = G.

Supposons que G est un p-groupe fini pour un certain nombre premier p. Montrer que
chaque sous-groupe maximal de G est distingué dans G. (Indication : Faire agir G, puis
un sous-groupe maximal de G, par conjugaison sur l’ensemble des sous-groupes mazximauz

de G.)

En déduire que G/®(Q) est abélien et conclure que c’est un p-groupe abélien élémentaire.

Exercice 12. Soit G un groupe fini résoluble. Montrer qu’il existe une famille de sous-groupes
(Gi)o<i<r telle que Gy = {e}, G, = G, G;<Gyy1 et Gip1 /Gy est cyclique pour 0 <i < r. On dit
qu’un tel groupe est polycyclique.

Exercice 13. Soit G un groupe fini. On dit qu’il est nilpotent lorsque ses sous-groupes de
Sylow sont distingués dans G.

1.
2.
3.

/.
5.

Montrer qu’un groupe abélien est nilpotent et qu’un p-groupe est nilpotent.
Montrer qu’un groupe nilpotent est produit direct de ses sous-groupes de Sylow.

En déduire que le centre d’un groupe nilpotent G est non trivial, et que si G est d’ordre
n et d est un diviseur de n, alors G admet un sous-groupe d’ordre d.

Montrer qu’un groupe nilpotent est résoluble. Montrer que la réciproque est fausse.

Pour quelles valeurs de n > 2 les groupes A, S,,, D,, sont-ils nilpotents ? Résolubles ¢

Remarque. La terminologie vient du fait que si IV est un sous-anneau nilpotent d'un anneau
unitaire A, alors 1 + N est un groupe multiplicatif nilpotent. Ainsi, le groupe des matrices
unipotentes (triangulaires supérieures avec des 1 sur la diagonale) de taille n x n sur un anneau
unitaire quelconque est nilpotent.

Exercice 14 (Le boss final). Classifier tous les groupes d’ordre au plus 15.

Ordre du groupe |12 |3[4|5|6[7|8[9]10|11|12[13|14 |15
Nombre de groupes | 1| 1| 1|21 |21 (521 |1 |5 |1|2]1

Remarque. Il y a 14 groupes d’ordre 16, dont des horreurs du style {a,z,y | a* = y* = 2? =
e,a’ = y?, raxr = a~', ay = ya, vy = yr) qui ne peut s’écrire comme un produit semi-direct, on
ne s’amusera donc pas a les classifier.



