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Groupes linéaires

Soit K un corps et n € N*.

1 Le groupe GL,(K)

Définition 1.1. Le groupe linéaire d’indice n sur K est GL,(K), l’ensemble des matrices
inversibles de taille n x n a coefficients dans K.

Exercice 1. Soit ¢ une puissance de nombre premier. Calculer | GL,(F,)|.
Exemple 1.2.
1. Soit A € K*. L’homothétie de rapport A est AI, € GL,(K).

2. Soit A € K* et 1 <i,5 <naveci# j. La transvection de coefficient A et d’indice (i, )
est la matrice T; ;(A) dont le coefficient en position (k,1) vaut

1sik=1
Asi (k1) = (i, ])
0 sinon.

3. Soit A € K* et 1 <i < n. La dilatation de rapport A et d’indice 7 est la matrice D;(\)
dont le coefficient en position (k,[) vaut

lsik=1+#1
Asi (k1) = (4,7)

0 sinon.

Théoréme 1.3. Le groupe GL, (K) est engendré par les matrices de transvection et de dilata-
tion.

Démonstration. La multiplication & gauche par D;(\) revient a& multiplier la i-ieme ligne par A.
La multiplication a gauche par 7; ;(\) revient a effectuer I'opération élémentaire L; — L; +AL;.
La terminaison de ’algorithme du pivot de Gauss donne donc le résultat. O

Remarque 1.4. Quand on multiplie a droite, ce sont les mémes opérations mais sur les
colonnes.

Proposition 1.5. On a
Z(GL,(K)) ={\, | N € K*}.



Démonstration. L’inclusion directe est claire.

Réciproquement, rappelons que si deux matrices commutent alors elles stabilisent les espaces
propres de de I'autre. Or, si K.u C K" est une droite vectorielle, on peut trouver une matrice
inversible dont c’est un espace propre, il suffit de compléter le vecteur non nul u en une base
de K™ et de considérer la matrice associée.

Donc si M € Z(GL,(K)), M préserve toutes les droites vectorielles. Si (ey,...,e,) est la

base canonique de K", il existe A\, A\q,..., A\, € K tels que Me; = Ne; pour 1 < 1 < n et
M(eg+---4e,) =Aer+--+e,) =Xeg+ -+ Aep = Aieg = -+ + A\yep, ce qui implique que
M = \I,. m

Définition 1.6. Soit M = (m;j)1<i j<n € My,(K). Le déterminant de M est
det(M) = > e(o) [] mion)-
ceG, i=1

Proposition 1.7. On a
GL,(K)={M € M, (K) | det M # 0}.
Le déterminant est un morphisme de groupes de GL,(K) dans K*.
Définition 1.8. Le groupe spécial linéaire est le noyau du déterminant :
SL,(K) ={M € GL,(K) | det M = 1}.
Exercice 2. Soit g une puissance de nombre premier. Déterminer | SL, (F,)|.
Proposition 1.9. Le groupe SL,(K) est engendré par les matrices de transvection.
Démonstration. 11 suffit de savoir que le pivot de Gauss permet de ramener une matrice M a
10 ... 0
01 ... 0
S 0
t

0 0 ... detM

Proposition 1.10. On a
Z(SL,(K)) = Z(GL,(K)) NSL,(K) ={Al, | A € K,\" =1}.
Théoréme 1.11. On a
D(GL,(K)) = D(SL,(K)) = SL,(K),
sauf sin=2 et K =Fy ou K = ;3.
Pour la démonstration, voir Perrin (Chap. IV, §3).

(voir exercices) donc D(GLy(Fs))

Remarque 1.12. On a GLy(Fy) = SLy(Fy) ~ S; =
= SLQ(Fg) mais D(SLQ(]F:J,)) ~ Hg ;ﬁ SLQ(Fg)

D(SLy(Fy)) ~ 7Z/37 tandis que D(GLy(F3))

(voir Perrin comme ci-dessus).

\)



2 Groupes orthogonaux et unitaires

Définition 2.1. Soit ¢ une forme quadratique sur K™. Le groupe d’isométries de q est

O(q) = {¢ € GL(K") [ go f = q}.

En fizant une base, on lui associe un sous-groupe de GL,(K). Dans le cas particulier de la
forme quadratique « euclidienne » (xq,...,x,) > 23+ -+ 22 dans la base canonique de R™,
ce groupe est le groupe orthogonal O, (R).

Proposition 2.2. Si q est une forme quadratique sur K™ de matrice S dans une base B de K"
alors

O(q) ~{M € GL,(K) | M"SM = S}.

En particulier, on a

0,(R) ={M € GL,(R) | M"M = I,}.
Définition 2.3. On définit le groupe spécial orthogonal comme
SO, (R) ={M € O,(R) | det(M) = 1}.
Remarque 2.4. On a O;(R) = {—idg,id} ~ Z/2Z et SO;(R) = {idg}. De plus,

SO2(R) = {(Z _ab> \a,bER,a2+b2:1} ~ S,

b

le cercle unité de C, via (a _ab> — a + ib. En particulier, SO5(R) est abélien.
Théoréme 2.5. Pour tout n > 1, le groupe O, (R) est engendré par les matrices de réflexions
(symétries orthogonales u telles que dimker(u — id) = n — 1) dans une base orthonormée.
Pour tout n > 3, le groupe SO, (R) est engendré par les matrices de retournements (symétries
orthogonales u telles que dimker(u — id) =n — 2) dans une base orthonormée.

Démonstration. Tout repose sur le fait que si M € O,(R) stabilise le sous-espace vectoriel F'
alors M stabilise F-. On fait une récurrence sur la codimension r de 1’espace des points fixes.
Sir =0 alors M = I, et il n'y a rien a prouver. Si 'on suppose le résultat vrai pour des
codimensions strictement inférieures a r, on montre comment multiplier M par une matrice
de réflexion pour augmenter la dimension de I'espace des points fixes. Pour ce faire, on prend
u € R" de norme 1 tel que Mu # u, H = {Mu — u}* I'hyperplan médiateur de u et Mu, et
S la matrice de réflexion par rapport a H. Alors SM admet Vect(u) et les points fixes de M
pour points fixes, et on lui applique 'hypothese de récurrence.

Pour SO, (R), le point précédent montre que ses éléments sont produits d’un nombre pair de
matrices de réflexions. Il suffit alors de montrer qu’un produit de deux réflexions est produit de
deux retournements en dimension au moins 3, le cas critique étant celui de la dimension 3. Mais
si S est une matrice de réflexion en dimension 3, alors —S est une matrice de retournement! [J

Remarque 2.6.

1. Dans le plan, la rotation d’angle € est la composée des symétries orthogonales par rapport
a deux droites formant un angle de 6/2 (faire un dessin et le voir en complexes).

2. On peut aussi montrer que le nombre de réflexions nécessaire est exactement la codimen-
sion de I'espace des points fixes.



3. Ces familles de générateurs sont utiles car ses éléments sont « simples », au sens ou leurs
points fixes sont nombreux, a l'instar des transpositions engendrant &,, et les 3-cycles
engendrant 2A,. Ils bénéficient également de propriétés de conjugaison intéressantes.

Proposition 2.7. Les réflexions sont conjuguées dans O, (R) pour n > 2 et les retournements
sont conjugués dans SO, (R) pour n > 3.

Corollaire 2.8. On a
Z(0,(R)) = {—idgn, idgn }
et
SO,L(R) sin <2
Z(SO,(R)) = {idgn} sin > 3 est impair
{—idgn,idgn} sin > 3 est pair.

Définition 2.9. Pour n > 1, le groupe unitaire est

Un(C) = {M € GL,(C) | M'M = I,,}
et le groupe spécial unitaire est

SU,(C) ={M € U,(C) | det M = 1}.

Remarque 2.10. Tout comme le groupe orthogonal correspond aux isométries de la forme
quadratique euclidienne de R™ dans une base orthonormée, le groupe unitaire correspond aux
isométries de la forme hermitienne de C"” dans une base orthonormée. Cependant, la géométrie
sous-jacente étant plus compliquée, on ne s’intéressera pas a ses systemes de générateurs.

3 Exercices

Exercice 3. Soit K un corps. Un groupe de matrices dans M,,(K) pour la multiplication est-il
un sous-groupe de GL,,(K) ¢

Exercice 4. Soit K un corps et n € N*. Montrer que
GL,(K) ~ SL,(K) x, K*

pour un certain morphisme @ d déterminer. (Indication : Chercher une section s : K* —
GL,(K) telle que det os = idgx.)

Exercice 5. 1. Soit n € N* et G un sous-groupe abélien fini de GL,(C). Montrer que les
éléments de G sont diagonalisables dans une méme base.

2. Soit K un corps de caractéristique différente de 2. Quel est le cardinal du plus grand
sous-groupe abélien fini G de GL, (K) tel pour tout M € G,M* =1,, ?

3. Montrer que si GL,(K) ~ GL,,(K) alors n = m.

Exercice 6. Soit p un nombre premier et n € N*. Montrer que l’ensemble des matrices uni-

potentes, c’est-a-dire triangulaires supérieures avec des 1 sur la diagonale, est un p-Sylow de
GL,(F)).

Exercice 7 (Quelques propriétés topologiques). Soit n € N*.
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1. Montrer que GL,(C) est connexe par arcs et que GL,(R) ne l’est pas.

2. Montrer que SL,(C) et SL,(R) sont connexes par arcs et en déduire les composantes
connezxes de GL,(R). Est-ce que ce sont des groupes compacts ?

3. Faire de méme avec O, (R) et SO, (R).

Exercice 8 (Un zeste de géométrie projective). Soit K un corps et n > 1. On note
P"(K) = (K" \ {0})/ ~
ot ~ désigne la relation d’équivalence de colinéarité.

1. Montrer que GL,1(K) agit de maniére transitive sur P"(K). Identifier le stabilisateur
d’un élément et le noyau de cette action.

2. Faire de méme avec SLy 1 (K).

3. On note
PGL,(K) = GL,(K)/Z(GL,(K))

et
PSL,(K) = SL,(K)/Z(SL,(K)).

On suppose désormais que K =T,. Calculer

| PGLy(Fy)[, | PSLn (Fy)| et [P"(IFy)|.
4. Montrer que

GLQ(FQ) = SLQ(FQ) = PGLQ(FQ) = PSLQ(FQ) >~ 63.

5. Montrer que
PGLy(F3) ~ &,

et
PSL2 (Fg) ~ 2[4.

6. Montrer que
PGLQ(F4) = PSLQ(F4) ~ 915.

Remarque. On peut aussi montrer (mais c’est plus difficile) que
PGLQ(]F5) ~ 65, PSLQ(F5> >~ 2[5, PSLQ(]FQ) >~ %6, PSL4(F2) ~ ng

et ce sont les seuls « isomorphismes exceptionnels » de ce type. Pour n > 2, les groupes
PSL,(K) sont tous simples, sauf PSLy(F3) ~ &3 et PSLy(F3) ~ 4. De méme, on définit
PSO,(R) = SO,(R)/Z(SO,(R)) pour n > 3 et ces groupes sont tous simples.

Exercice 9. 1. Montrer que

GLA(Z) = {M € M,(Z) | det(M) = +1}.



2. Soit

11
T- (O 1).
Montrer que (S,T) = SLy(Z). Indication : Calculer les puissances de S et T et étudier
leffet de leur multiplication a gauche sur une matrice.

3. Ecrire <179 g) comme produit de puissances de S et T.

Exercice 10. Pour n € N*, notons
0,(C) ={M € GL,(C) | M"M = I,,}.

Montrer que, pour n > 2, O,(C) n’est pas compact. L’identifier ¢ un groupe de la forme O(q)
pour une certain forme quadratique a identifier.

Exercice 11. Montrer que si n € N* est impair alors O,(R) ~ SO, (R) x Z/2Z. Est-ce encore
vrai pour n pair ?

Exercice 12 (SO3(R) est simple). Soit H<1SO3(R) non trivial. On va montrer que H = SO3(R)
et donc que SO3(R) est simple.

1. Soit N € H \ {I3}. Justifier que limage de lapplication ¢ : M — tr(MNM'N™1),
définie sur SO3(R), est un intervalle de la forme [a, 3], avec a € [—1,3].

2. Justifier que pour n € N* assez grand, il existe M € SO3(R) telle que MNM N~ soit
une rotation d’angle +.

3. Conclure que H contient un renversement, puis que H = SO3(R).

Exercice 13. 1. Montrer que
su©) = {(§ 7} laseciar+iar -1}

2. Soit H la R-algébre des quaternions de dimension 4 engendrée par les matrices

v 0 0 —1 0 —
= (5 2ot )e=( 1) ermccr
On admet que H est une algébre a division non commutative, de centre Rl et que (I, J) ~
Hs. Montrer que SUy(C) s’identifie alors d la sphére S* C R?.

3. On notera désormais ¢ = a + ib+ jc + kd les quaternions, avec a,b,c,d € R. La norme
de q est donnée par |q|* = a* + b* + ¢® + d*. Donner un argument non calculatoire pour
montrer que la norme est multiplicative sur H.

4. Appelons partie réelle de ¢ = a+ib+ jc+ kd le réel a. Un quaternion imaginaire pur
est un quaternion de partie réelle nulle. Soit ¢ € H un quaternion unitaire (de norme
1). Montrer que la conjugaison par q correspond d une isométrie positive, qui préserve le
sous-espace vectoriel des quaternions imaginaires purs.

5. En déduire que SO3(R) ~ SUy(C) /{1, —I5}.



