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Groupes linéaires

Soit K un corps et n ∈ N∗.

1 Le groupe GLn(K)
Définition 1.1. Le groupe linéaire d’indice n sur K est GLn(K), l’ensemble des matrices
inversibles de taille n × n à coefficients dans K.

Exercice 1. Soit q une puissance de nombre premier. Calculer | GLn(Fq)|.

Exemple 1.2.

1. Soit λ ∈ K×. L’homothétie de rapport λ est λIn ∈ GLn(K).

2. Soit λ ∈ K× et 1 ≤ i, j ≤ n avec i ̸= j. La transvection de coefficient λ et d’indice (i, j)
est la matrice Ti,j(λ) dont le coefficient en position (k, l) vaut

1 si k = l
λ si (k, l) = (i, j)

0 sinon.

3. Soit λ ∈ K× et 1 ≤ i ≤ n. La dilatation de rapport λ et d’indice i est la matrice Di(λ)
dont le coefficient en position (k, l) vaut

1 si k = l ̸= i
λ si (k, l) = (i, i)

0 sinon.

Théorème 1.3. Le groupe GLn(K) est engendré par les matrices de transvection et de dilata-
tion.

Démonstration. La multiplication à gauche par Di(λ) revient à multiplier la i-ième ligne par λ.
La multiplication à gauche par Ti,j(λ) revient à effectuer l’opération élémentaire Li → Li +λLj.
La terminaison de l’algorithme du pivot de Gauss donne donc le résultat.

Remarque 1.4. Quand on multiplie à droite, ce sont les mêmes opérations mais sur les
colonnes.

Proposition 1.5. On a
Z(GLn(K)) = {λIn | λ ∈ K×}.
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Démonstration. L’inclusion directe est claire.
Réciproquement, rappelons que si deux matrices commutent alors elles stabilisent les espaces

propres de de l’autre. Or, si K.u ⊂ Kn est une droite vectorielle, on peut trouver une matrice
inversible dont c’est un espace propre, il suffit de compléter le vecteur non nul u en une base
de Kn et de considérer la matrice associée.

Donc si M ∈ Z(GLn(K)), M préserve toutes les droites vectorielles. Si (e1, . . . , en) est la
base canonique de Kn, il existe λ, λ1, . . . , λn ∈ K tels que Mei = λiei pour 1 ≤ i ≤ n et
M(e1 + · · · + en) = λ(e1 + · · · + en) = λe1 + · · · + λen = λ1e1 = · · · + λnen, ce qui implique que
M = λIn.

Définition 1.6. Soit M = (mi,j)1≤i,j≤n ∈ Mn(K). Le déterminant de M est

det(M) =
∑

σ∈Sn

ε(σ)
n∏

i=1
mi,σ(i).

Proposition 1.7. On a

GLn(K) = {M ∈ Mn(K) | det M ̸= 0}.

Le déterminant est un morphisme de groupes de GLn(K) dans K×.

Définition 1.8. Le groupe spécial linéaire est le noyau du déterminant :

SLn(K) = {M ∈ GLn(K) | det M = 1}.

Exercice 2. Soit q une puissance de nombre premier. Déterminer | SLn(Fq)|.

Proposition 1.9. Le groupe SLn(K) est engendré par les matrices de transvection.

Démonstration. Il suffit de savoir que le pivot de Gauss permet de ramener une matrice M à
1 0 . . . 0
0 1 . . . 0
... ... . . . 0
0 0 . . . det M

 .

Proposition 1.10. On a

Z(SLn(K)) = Z(GLn(K)) ∩ SLn(K) = {λIn | λ ∈ K, λn = 1}.

Théorème 1.11. On a

D(GLn(K)) = D(SLn(K)) = SLn(K),

sauf si n = 2 et K = F2 ou K = F3.

Pour la démonstration, voir Perrin (Chap. IV, §3).

Remarque 1.12. On a GL2(F2) = SL2(F2) ≃ S3 (voir exercices) donc D(GL2(F2)) =
D(SL2(F2)) ≃ Z/3Z tandis que D(GL2(F3)) = SL2(F3) mais D(SL2(F3)) ≃ H8 ̸≃ SL2(F3)
(voir Perrin comme ci-dessus).
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2 Groupes orthogonaux et unitaires
Définition 2.1. Soit q une forme quadratique sur Kn. Le groupe d’isométries de q est

O(q) = {φ ∈ GL(Kn) | q ◦ f = q}.

En fixant une base, on lui associe un sous-groupe de GLn(K). Dans le cas particulier de la
forme quadratique « euclidienne » (x1, . . . , xn) 7→ x2

1 + · · · + x2
n dans la base canonique de Rn,

ce groupe est le groupe orthogonal On(R).

Proposition 2.2. Si q est une forme quadratique sur Kn de matrice S dans une base B de Kn

alors
O(q) ≃ {M ∈ GLn(K) | M⊤SM = S}.

En particulier, on a
On(R) = {M ∈ GLn(R) | M⊤M = In}.

Définition 2.3. On définit le groupe spécial orthogonal comme

SOn(R) = {M ∈ On(R) | det(M) = 1}.

Remarque 2.4. On a O1(R) = {− idR, id} ≃ Z/2Z et SO1(R) = {idR}. De plus,

SO2(R) =
{(

a −b
b a

)
| a, b ∈ R, a2 + b2 = 1

}
≃ S1,

le cercle unité de C, via
(

a −b
b a

)
7→ a + ib. En particulier, SO2(R) est abélien.

Théorème 2.5. Pour tout n ≥ 1, le groupe On(R) est engendré par les matrices de réflexions
(symétries orthogonales u telles que dim ker(u − id) = n − 1) dans une base orthonormée.
Pour tout n ≥ 3, le groupe SOn(R) est engendré par les matrices de retournements (symétries
orthogonales u telles que dim ker(u − id) = n − 2) dans une base orthonormée.

Démonstration. Tout repose sur le fait que si M ∈ On(R) stabilise le sous-espace vectoriel F
alors M stabilise F ⊥. On fait une récurrence sur la codimension r de l’espace des points fixes.
Si r = 0 alors M = In et il n’y a rien à prouver. Si l’on suppose le résultat vrai pour des
codimensions strictement inférieures à r, on montre comment multiplier M par une matrice
de réflexion pour augmenter la dimension de l’espace des points fixes. Pour ce faire, on prend
u ∈ Rn de norme 1 tel que Mu ̸= u, H = {Mu − u}⊥ l’hyperplan médiateur de u et Mu, et
S la matrice de réflexion par rapport à H. Alors SM admet Vect(u) et les points fixes de M
pour points fixes, et on lui applique l’hypothèse de récurrence.

Pour SOn(R), le point précédent montre que ses éléments sont produits d’un nombre pair de
matrices de réflexions. Il suffit alors de montrer qu’un produit de deux réflexions est produit de
deux retournements en dimension au moins 3, le cas critique étant celui de la dimension 3. Mais
si S est une matrice de réflexion en dimension 3, alors −S est une matrice de retournement !

Remarque 2.6.

1. Dans le plan, la rotation d’angle θ est la composée des symétries orthogonales par rapport
à deux droites formant un angle de θ/2 (faire un dessin et le voir en complexes).

2. On peut aussi montrer que le nombre de réflexions nécessaire est exactement la codimen-
sion de l’espace des points fixes.

3



3. Ces familles de générateurs sont utiles car ses éléments sont « simples », au sens où leurs
points fixes sont nombreux, à l’instar des transpositions engendrant Sn et les 3-cycles
engendrant An. Ils bénéficient également de propriétés de conjugaison intéressantes.

Proposition 2.7. Les réflexions sont conjuguées dans On(R) pour n ≥ 2 et les retournements
sont conjugués dans SOn(R) pour n ≥ 3.

Corollaire 2.8. On a
Z(On(R)) = {− idRn , idRn}

et

Z(SOn(R)) =


SOn(R) si n ≤ 2

{idRn} si n ≥ 3 est impair
{− idRn , idRn} si n ≥ 3 est pair.

Définition 2.9. Pour n ≥ 1, le groupe unitaire est

Un(C) = {M ∈ GLn(C) | M
⊤

M = In}

et le groupe spécial unitaire est

SUn(C) = {M ∈ Un(C) | det M = 1}.

Remarque 2.10. Tout comme le groupe orthogonal correspond aux isométries de la forme
quadratique euclidienne de Rn dans une base orthonormée, le groupe unitaire correspond aux
isométries de la forme hermitienne de Cn dans une base orthonormée. Cependant, la géométrie
sous-jacente étant plus compliquée, on ne s’intéressera pas à ses systèmes de générateurs.

3 Exercices
Exercice 3. Soit K un corps. Un groupe de matrices dans Mn(K) pour la multiplication est-il
un sous-groupe de GLn(K) ?

Exercice 4. Soit K un corps et n ∈ N∗. Montrer que

GLn(K) ≃ SLn(K) ⋊φ K×

pour un certain morphisme φ à déterminer. (Indication : Chercher une section s : K× →
GLn(K) telle que det ◦s = idK×.)

Exercice 5. 1. Soit n ∈ N∗ et G un sous-groupe abélien fini de GLn(C). Montrer que les
éléments de G sont diagonalisables dans une même base.

2. Soit K un corps de caractéristique différente de 2. Quel est le cardinal du plus grand
sous-groupe abélien fini G de GLn(K) tel pour tout M ∈ G, M2 = In ?

3. Montrer que si GLn(K) ≃ GLm(K) alors n = m.

Exercice 6. Soit p un nombre premier et n ∈ N∗. Montrer que l’ensemble des matrices uni-
potentes, c’est-à-dire triangulaires supérieures avec des 1 sur la diagonale, est un p-Sylow de
GLn(Fp).

Exercice 7 (Quelques propriétés topologiques). Soit n ∈ N∗.
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1. Montrer que GLn(C) est connexe par arcs et que GLn(R) ne l’est pas.

2. Montrer que SLn(C) et SLn(R) sont connexes par arcs et en déduire les composantes
connexes de GLn(R). Est-ce que ce sont des groupes compacts ?

3. Faire de même avec On(R) et SOn(R).

Exercice 8 (Un zeste de géométrie projective). Soit K un corps et n ≥ 1. On note

Pn(K) = (Kn+1 \ {0})/ ∼

où ∼ désigne la relation d’équivalence de colinéarité.

1. Montrer que GLn+1(K) agit de manière transitive sur Pn(K). Identifier le stabilisateur
d’un élément et le noyau de cette action.

2. Faire de même avec SLn+1(K).

3. On note
PGLn(K) = GLn(K)/Z(GLn(K))

et
PSLn(K) = SLn(K)/Z(SLn(K)).

On suppose désormais que K = Fq. Calculer

| PGLn(Fq)|, | PSLn(Fq)| et |Pn(Fq)|.

4. Montrer que
GL2(F2) = SL2(F2) = PGL2(F2) = PSL2(F2) ≃ S3.

5. Montrer que
PGL2(F3) ≃ S4

et
PSL2(F3) ≃ A4.

6. Montrer que
PGL2(F4) = PSL2(F4) ≃ A5.

Remarque. On peut aussi montrer (mais c’est plus difficile) que

PGL2(F5) ≃ S5, PSL2(F5) ≃ A5, PSL2(F9) ≃ A6, PSL4(F2) ≃ A8

et ce sont les seuls « isomorphismes exceptionnels » de ce type. Pour n ≥ 2, les groupes
PSLn(K) sont tous simples, sauf PSL2(F3) ≃ S3 et PSL2(F3) ≃ A4. De même, on définit
PSOn(R) = SOn(R)/Z(SOn(R)) pour n ≥ 3 et ces groupes sont tous simples.

Exercice 9. 1. Montrer que

GLn(Z) = {M ∈ Mn(Z) | det(M) = ±1}.
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2. Soit
S =

(
0 −1
1 0

)
et

T =
(

1 1
0 1

)
.

Montrer que ⟨S, T ⟩ = SL2(Z). Indication : Calculer les puissances de S et T et étudier
l’effet de leur multiplication à gauche sur une matrice.

3. Écrire
(

19 8
7 3

)
comme produit de puissances de S et T .

Exercice 10. Pour n ∈ N∗, notons

On(C) = {M ∈ GLn(C) | M⊤M = In}.

Montrer que, pour n ≥ 2, On(C) n’est pas compact. L’identifier à un groupe de la forme O(q)
pour une certain forme quadratique à identifier.

Exercice 11. Montrer que si n ∈ N∗ est impair alors On(R) ≃ SOn(R) × Z/2Z. Est-ce encore
vrai pour n pair ?

Exercice 12 (SO3(R) est simple). Soit H◁SO3(R) non trivial. On va montrer que H = SO3(R)
et donc que SO3(R) est simple.

1. Soit N ∈ H \ {I3}. Justifier que l’image de l’application φ : M 7→ tr(MNM−1N−1),
définie sur SO3(R), est un intervalle de la forme [a, 3], avec a ∈ [−1, 3[.

2. Justifier que pour n ∈ N∗ assez grand, il existe M ∈ SO3(R) telle que MNM−1N−1 soit
une rotation d’angle ±π

n
.

3. Conclure que H contient un renversement, puis que H = SO3(R).
Exercice 13. 1. Montrer que

SU2(C) =
{(

α −β
β α

)
| α, β ∈ C, |α|2 + |β|2 = 1

}
.

2. Soit H la R-algèbre des quaternions de dimension 4 engendrée par les matrices

I2, I =
(

i 0
0 −i

)
, J =

(
0 −1
1 0

)
, K =

(
0 −i

−i 0

)
∈ M2(C).

On admet que H est une algèbre à division non commutative, de centre RI2 et que ⟨I, J⟩ ≃
H8. Montrer que SU2(C) s’identifie alors à la sphère S3 ⊂ R4.

3. On notera désormais q = a + ib + jc + kd les quaternions, avec a, b, c, d ∈ R. La norme
de q est donnée par |q|2 = a2 + b2 + c2 + d2. Donner un argument non calculatoire pour
montrer que la norme est multiplicative sur H.

4. Appelons partie réelle de q = a + ib + jc + kd le réel a. Un quaternion imaginaire pur
est un quaternion de partie réelle nulle. Soit q ∈ H un quaternion unitaire (de norme
1). Montrer que la conjugaison par q correspond à une isométrie positive, qui préserve le
sous-espace vectoriel des quaternions imaginaires purs.

5. En déduire que SO3(R) ≃ SU2(C)/{I2, −I2}.
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