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Actions de groupes

Dans toute cette feuille, G désigne un groupe.

1 Actions de groupe
Définition 1.1. Soit X un ensemble non vide. On dit que G agit (à gauche) sur X, et on
note G ↷ X, lorsqu’il existe une application

G × X → X
(g, x) 7→ g.x

vérifiant :

1. ∀x ∈ X, e.x = x.

2. ∀g, g′ ∈ G, ∀x ∈ X, g.(g′.x) = (gg′).x.

Exemple 1.2.

1. G agit trivialement sur n’importe quel ensemble non vide.

2. G agit sur lui-même par translation à gauche : ∀g, g′ ∈ G, g.g′ = gg′. Il agit aussi sur
chacun de ses quotients de cette manière.

3. G agit sur l’ensemble de ses sous-groupes par conjugaison : ∀g ∈ G, ∀H sous-groupe de G, g.H =
gHg−1.

4. Si H est un sous-groupe distingué de G, G agit sur H par conjugaison : ∀g ∈ G, ∀h ∈
H, g.h = ghg−1.

5. Aut(G) agit sur G : ∀φ ∈ Aut(G), ∀g ∈ G, φ.g = φ(g).

6. Si E est un espace vectoriel, GL(E) agit sur E : ∀f ∈ GL(E), ∀x ∈ E, f.g = f(g).

7. Pour tout n ≥ 1, Sn agit de manière naturelle sur {1, . . . , n}.

!△ Certaines actions « naturelles » sont en fait des actions à droite. Par exemple, pour X un
ensemble non vide, on a envie de dire que Sn agit sur Xn par

σ.(x1, . . . , xn) = (xσ(1), . . . , xσ(n)),

pour σ ∈ Sn et x = (x1, . . . , xn) ∈ Xn, mais pour τ ∈ Sn on a

σ.(τ.x) = σ.(xτ(1), . . . , xτ(n)) = (xτ(σ(1)), . . . , xτ(σ(1))) = τσ.x.

Ici, une action à gauche proche est donnée par

σ.x = (xσ−1(1), . . . , xσ−1(n)).
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Proposition 1.3. Soit X un ensemble non vide. La donnée d’une action de groupe de G sur
X est équivalente à celle d’un morphisme de groupes G → S(X).

Démonstration. Si G ↷ X alors pour tout g ∈ G on dispose de ρg ∈ S(X) défini par ρg(x) = g.x
pour x ∈ X. La définition d’une action de groupe signifie que g 7→ ρg est un morphisme de
groupes de G dans S(X). Réciproquement, si ρ : G → S(X) est un morphisme de groupes
alors on définit une action de groupes de G sur X par g.x = ρ(g)(x) pour g ∈ G, x ∈ X.

Corollaire 1.4 (Théorème de Cayley). Si G est fini d’ordre n, alors il existe un plongement
G ↪→ Sn.

Démonstration. L’action par translation à gauche de G sur lui-même donne un morphisme de
groupes ι : G → Sn. Mais ce morphisme est injectif puisque si ι(g) = idG alors en particulier
ge = e, autrement dit g = e.

Définition 1.5. Soit X un ensemble non vide sur lequel G agit. L’action est dite :

1. transitive lorsque ∀x, y ∈ X, ∃g ∈ G, g.x = y. (« On peut passer d’un élément à
n’importe quel autre »)

2. simplement transitive lorsque ∀x, y ∈ X, ∃!g ∈ G, g.x = y. (« On peut passer d’un
élément à n’importe quel autre d’une manière unique »)

3. fidèle lorsque le morphisme G → S(X) est injectif. (« Seul le neutre agit triviale-
ment »)

4. libre lorsque ∀g ∈ G \ {e}, ∀x ∈ X, g.x ̸= x. (« Seul le neutre a des points fixes »)

Remarque 1.6. Une action libre est fidèle.

Exercice 1. Parmi les exemples de l’Exemple 1.2, dire si les actions sont transitives, simple-
ment transitives, fidèles ou libres.

Exercice 2. Montrer qu’une action est simplement transitive si et seulement si elle est tran-
sitive et libre. Donner un exemple d’action fidèle qui n’est pas libre.

2 Orbites et stabilisateurs
Dans cette section, X est un ensemble non vide sur lequel G agit.

Définition 2.1. Si x ∈ X, l’orbite de x sous l’action de G est

Orb(x) = {g.x | g ∈ G} ⊂ X

et le stabilisateur de x est

Stab(x) = {g ∈ G | g.x = x} ⊂ G.

Si g ∈ G, le fixateur de g est

Fix(g) = {x ∈ X | g.x = x}.

On appelle espace-quotient, et on note G\X , l’ensemble des orbites pour cette action.
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Exemple 2.2.

1. L’action de G sur X est transitive si et seulement si l’orbite de n’importe quel élément
est X.

2. Pour l’action de G sur lui-même par conjugaison, l’orbite de g ∈ G est C(g) = {g′gg′−1 |
g′ ∈ G}, la classe de conjugaison de g, et son stabilisateur est Z(g) = {g′ ∈ G |
g′gg′−1 = g}, le centralisateur de g. De même, le fixateur de g ∈ G est son centralisateur.

3. Si H est un sous-groupe de G alors le normalisateur de H dans G est le stabilisateur
de H pour l’action de G sur ses sous-groupes par conjugaison. C’est aussi le plus grand
sous-groupe de G dans lequel H est distingué.

4. Pour l’action de Sn sur {1, . . . , n}, le stabilisateur de k ∈ {1, . . . , n} est l’ensemble des
permutations qui n’ont pas k dans leur support et son orbite est {1, . . . , n}.

Remarque 2.3. On peut reformuler l’Exercice 2 de la manière suivante : une action est
simplement transitive si et seulement si elle est transitive et tous les stabilisateurs sont réduits
à un singleton.

Proposition 2.4 (Relations orbite-stabilisateur). Soit x ∈ X. Alors Stab(x) est un sous-groupe
de G et il y a une bijection naturelle entre G/ Stab(x) et Orb(x). De plus, deux éléments dans
une même orbite ont des stabilisateurs conjugués.

Démonstration. La bijection est donnée par

g Stab(x) 7→ g.x,

dont on vérifie qu’elle est bien définie. Si y = g.x alors Stab(y) = g Stab(x)g−1.
!△ Il n’y a aucune raison pour que Stab(x) soit distingué dans G, donc il n’y a en général pas

de structure naturelle de groupe sur G/ Stab(x) (ou sur Orb(x)).

Proposition 2.5 (« Équation aux classes »). Les orbites de X forment une partition de X.
En particulier, si X est fini et si x1, . . . , xr sont des représentants des orbites, alors

|X| =
r∑

i=1
| Orb(xi)|.

Si de plus G est fini, on a aussi

|X| =
r∑

i=1
|G/ Stab(xi)|.

Théorème 2.6 (Burnside). Supposons que G et X sont finis. Le nombre d’orbites pour l’action
de G sur X vaut ∣∣∣∣G\X

∣∣∣∣ = 1
|G|

∑
g∈G

| Fix(g)|.

Démonstration. On compte de deux manières différentes le cardinal de l’ensemble

{(g, x) ∈ G × X | g.x = x}.

D’un côté il vaut ∑
g∈G

| Fix(g)|
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et de l’autre il vaut ∑
x∈X

| Stab(x)|.

Mais d’après la relation orbite-stabilisateur, cette dernière somme est égale à
∑
x∈X

|G|
| Orb(x)| .

Or, si y ∈ Orb(x) alors Orb(y) = Orb(x) et donc
∑
x∈X

|G|
| Orb(x)| = |G|

∣∣∣∣G\X
∣∣∣∣ .

Exercice 3. Calculer le nombre de coloriages possibles des 12 pointes d’un cadran fixé avec
6 points bleus, 4 points blancs et 2 points rouges. Faire de même quand on s’autorise à faire
tourner le cadran.

3 Applications aux p-groupes
Définition 3.1. Supposons que G est fini et soit p un nombre premier. On dit que G est un
p-groupe lorsque le cardinal de G est une puissance de p.

Lemme 3.2. Soit X un ensemble non vide sur lequel G agit. Si G est un p-groupe fini alors

|X| ≡ |XG| mod p,

où
XG = {x ∈ X | ∀g ∈ G, g.x = x} =

⋂
g∈G

Fix(g).

Démonstration. D’après l’équation aux classes, on a

|X| =
r∑

i=1
| Orb(xi)|,

où les xi sont des représentants des orbites de X sous l’action de G. Si xi ∈ XG alors | Orb(xi)| =
1, tandis que si xi ̸∈ XG alors | Orb(xi)| = |G|

| Stab(xi)| est divisible par p puisque Stab(xi) ⊊ G.

Proposition 3.3. Supposons que G est un p-groupe fini. Alors Z(G) ̸= {e}.

Démonstration. Faisons agir G sur lui-même par conjugaison. L’ensemble des points fixes pour
cette action est exactement Z(G) et d’après le Lemme 3.2, on a donc |G| ≡ Z(G) mod p,
autrement dit, p | |Z(G)|. Mais |Z(G)| ≥ 1 puisque e ∈ Z(G) et donc |Z(G)| ≥ p > 1.

Lemme 3.4. Si G/Z(G) est monogène alors G est abélien.

Démonstration. Soit xZ(G) un générateur de G/Z(G) et soit g1, g2 ∈ G. Par définition, il
existe k1, k2 ∈ Z tels que g1Z(G) = (xZ(G))k1 et g2Z(G) = (xZ(G))k2 . En particulier, il existe
z1, z2 ∈ Z(G) tels que g1 = xk1z1 et g2 = xk2z2. Alors

g1g2 = xk1+k2z1z2 = g2g1

et donc g1 et g2 commutent.

4



Corollaire 3.5. Soit p un nombre premier. Tout groupe d’ordre p2 est abélien.

Démonstration. Soit G un groupe d’ordre p2. D’après la Proposition 3.3, Z(G) est un sous-
groupe non trivial de G. D’après le théorème de Lagrange, son cardinal ne peut être que p ou
p2. On va montrer qu’il s’agit de p2, ce qui voudra dire que G = Z(G), autrement dit, que G
est abélien.

Si par l’absurde |Z(G)| = p alors, toujours d’après le théorème de Lagrange, |G/Z(G)| = p.
Mais alors G/Z(G) est cyclique, ce qui implique que G est abélien d’après le Lemme 3.4, ce qui
est finalement absurde puisqu’on a supposé |Z(G)| = p.

Théorème 3.6 (Cauchy). Si G est un groupe fini d’ordre divisible par le nombre premier p
alors G admet un élément d’ordre p.

Démonstration. Faisons agir H = Z/pZ sur

X = {(g1, . . . , gp) ∈ Gp | g1 . . . gp = e}

par décalage d’indice modulo p, autrement dit,

k.(g1, . . . , gp) = (gk+1, . . . , gk+p).

D’après le Lemme 3.2, on a |X| ≡ |XH | mod p. Mais XH est constitué des éléments de X
à coordonnées constantes, c’est-à-dire des p-uplets (g, . . . , g) avec gp = e. Or |X| = |G|p−1

puisqu’on peut prendre n’importe quelles p−1 premières coordonnées pour un élément de X et la
dernière est alors uniquement déterminée. Ainsi |XH | est divisible par p. Enfin, (e, . . . , e) ∈ XH

donc |XH | ≥ p et il existe g ∈ G \ {e} tel que gp = e, c’est-à-dire que g est un élément d’ordre
p de G.

Le lemme de Cauchy est un cas particulier des résultats suivants.

Théorème 3.7 (Sylow). Soit p un nombre premier. Supposons que G est fini d’ordre pnm avec
m, n ∈ N et p ne divisant pas m. Alors G possède des p-sous-groupes de Sylow, c’est-à-dire
des sous-groupes d’ordre pn. De plus, ceux-ci sont tous conjugués dans G et leur nombre np

vérifie np ≡ 1 mod p et np | m.

Remarque 3.8. Les théorèmes de Sylow ne sont pas explicitement au programme mais sont
suffisamment classiques pour être abordés. On peut les démontrer à l’aide d’actions de groupes
bien choisies, voir les exercices.

4 Exercices
Exercice 4. Soit K un corps et n ∈ N∗. Déterminer une action non triviale de Sn sur
K[X1, . . . , Xn]. Faire de même avec le groupe GLn(K).

Exercice 5. Déterminer les orbites de l’action de GLn(C) par conjugaison sur l’ensemble des
matrices diagonalisables de Mn(C).

Exercice 6. Soit p un nombre premier et G un groupe d’ordre p2. Montrer que G ≃ Z/p2Z ou
G ≃ Z/pZ × Z/pZ.

Exercice 7. Soit G un groupe fini d’ordre n et ι : G ↪→ Sn le plongement de Cayley. Pour
g ∈ G, calculer ε(ι(g)). À quelle condition le plongement ι est-il à valeurs dans An ?
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Exercice 8. Soit n ≥ 2. Montrer que tout sous-groupe d’indice n de Sn est isomorphe à
Sn−1 (on pourra distinguer les cas n < 5 et n ≥ 5). Déterminer un plongement Sn ↪→ An+2.
Existe-t-il un plongement Sn ↪→ An+1 ?

Exercice 9. Soit G un groupe fini d’ordre n, p le plus petit facteur premier de n et H un sous-
groupe de G d’indice p. Montrer que H ◁ G. (Indication : Considérer l’action par translation à
gauche de G sur G/H.)

Exercice 10. Si P est une partie de Rn, on note Iso(P ) l’ensemble des isométries affines f de
Rn telles que f(P ) = P , et Iso+(P ) celles qui sont positives.

1. Montrer que Iso(P ) est un groupe pour la composition, et que Iso+(P ) en est un sous-
groupe distingué.

2. Soit ∆ un tétraèdre régulier dans R3, de sommets A, B, C et D. Déterminer un morphisme
de groupes φ : Iso(∆) → S4.

3. Montrer que φ est bijectif. En déduire Iso+(∆).

4. Calculer le nombre de coloriages différents des faces d’un tétraèdre régulier avec c ∈
{1, . . . , 4} couleurs.

5. Soit maintenant C un cube dans R3. On numérote ses sommets A1, A2, A3, A4, B1, B2, B3, B4
de sorte que les grandes diagonales du cube soient les [AiBi]. Déterminer un morphisme
de groupes φ : Iso(C) → S4.

6. Montrer que φ est surjectif et identifier son noyau.

7. Montrer que φ|Iso+(C) est un isomorphisme de Iso+(C) dans S4.

8. En déduire que Iso(C) ≃ S4 × Z/2Z.

9. Calculer le nombre de coloriages différents des faces d’un cube avec c ∈ {1, . . . , 6} cou-
leurs.

Exercice 11. Soit G un groupe fini. Notons p(G) la probabilité que deux éléments choisis
uniformément dans G commutent, autrement dit,

p(G) = |{(g, h) ∈ G2 | gh = hg}|
|G|2

.

1. Montrer que p(H8) = 5
8 .

2. On va montrer que si G est un groupe non abélien alors p(G) ≤ 5
8 .

(a) Justifier que si G est non abélien alors [G : Z(G)] ≥ 4.
(b) Montrer que pour tout g ∈ G \ {e}, [G : Z(g)] ≥ 2.
(c) Conclure.

Exercice 12. Dans cet exercice, on va montrer les théorèmes de Sylow. Soit donc p un nombre
premier et G un groupe fini d’ordre pnm avec p ∤ m et n ≥ 1.

1. Décrire une action non triviale de G sur l’ensemble de ses parties de cardinal pn.
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2. Montrer qu’au moins une orbite a un cardinal non divisible par p et en déduire qu’un des
stabilisateurs est un p-Sylow de G.

3. Montrer que si H est un sous-groupe de G et S est un p-Sylow de G, alors il existe g ∈ G
tel que gSg−1 ∩ H soit un p-Sylow de H. (Indication : Écrire l’équation aux classes pour
l’action par translation de H sur G/S.) On admettra (cf. Feuille 4) que cela permet de
montrer que tout groupe fini admet un p-Sylow.

4. En déduire que tout p-sous-groupe de G est contenu dans un conjugué de S. En particulier,
les p-Sylow de G sont tous conjugués.

5. En faisant agir G par conjugaison sur l’ensemble de ses p-Sylow, en déduire que np ≡
1 mod p et np | m.

6. Montrer qu’un p-Sylow de G est distingué dans G si et seulement s’il est le seul p-Sylow
de G.

Exercice 13. Montrer qu’un groupe d’ordre 35 est cyclique et qu’un groupe d’ordre 48 n’est
pas simple.

Exercice 14. Montrer qu’un groupe simple d’ordre 60 est isomorphe à A5.

Exercice 15. Déterminer les 2-Sylow de A4 et ceux de S4.

Exercice 16. Dénombrer les p-Sylow de Sp, où p est un nombre premier.

Exercice 17. Soit p < q deux nombres premiers distincts. Montrer que si p ∤ q − 1 alors tout
groupe d’ordre pq est cyclique. Dans le cas contraire, montrer qu’un groupe d’ordre pq est soit
cyclique, soit isomorphe à un produit semi-direct non abélien Z/qZ ⋊ Z/pZ.

Exercice 18. Soit G un groupe fini d’ordre pn où p est un nombre premier et n ∈ N∗. Montrer
que pour tout k ∈ {0, . . . , n}, G admet un sous-groupe distingué d’ordre pk. En déduire que tout
groupe d’ordre pnm avec p ∤ m admet des sous-groupes d’ordre pk pour tout k ∈ {0, . . . , n}.

Exercice 19. Soit n ≥ 2.

1. Montrer que si φ ∈ Aut(Sn) envoie les transpositions sur des transpositions, alors φ est
un automorphisme intérieur. (Indication : Utiliser le fait que les transpositions τi = (1 i)
engendrent Sn.)

2. Soit σ ∈ Sn qui s’écrit comme produit de nk k-cycles pour 1 ≤ k ≤ n. Montrer que le
centralisateur de σ a pour cardinal

|C(σ)| =
n∏

k=1
knknk!.

3. En déduire que pour n ̸= 6, Aut(Sn) = Int(Sn) ≃ Sn.

4. Montrer que S5 possède six 5-Sylow.

5. En déduire un morphisme injectif S5 → S6.

6. Notons H l’image de ce morphisme et considérons l’action par translation à gauche de
S6 sur S6/H. Montrer que le morphisme associé φ est un automorphisme.
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7. Montrer que φ n’est pas intérieur. (Indication : Montrer que H n’a pas de point fixe pour
l’action naturelle sur {1, . . . , 6} mais φ(H) en a.)

Exercice 20. Soit G un groupe et X un ensemble non vide sur lequel G agit. On dit que G
agit doublement transitivement sur X lorsque pour tout x1, x2, y1, y2 ∈ X avec x1 ̸= x2 et
y1 ̸= y2 il existe g ∈ G tel que g.x1 = y1 et g.x2 = y2.

1. Montrer qu’un groupe agissant doublement transitivement agit transitivement. La réci-
proque est-elle vraie ?

2. Montrer que si E est un espace vectoriel alors GL(E) agit doublement transitivement sur
l’ensemble des droites de E.

3. Montrer que si G est fini et agit doublement transitivement sur X alors

|G| = 1
2

∑
g∈G

| Fix(g)|2.

(Indication : On pourra considérer l’action naturelle de G sur X × X.)

4. Montrer que si G agit doublement transitivement sur X alors pour tout x ∈ X, Stab(x)
est un sous-groupe maximal de G. Montrer également qu’un sous-groupe distingué de G
agit trivialement ou transitivement sur X.

5. Plus généralement, pour n ∈ N∗, on dit que G agit n-transitivement sur X lorsque pour
x1, . . . , xn ∈ X deux à deux distincts et y1, . . . , yn ∈ X deux à deux distincts, il existe
g ∈ G tel que g.x1 = y1, . . . , g.xn = yn. Montrer que G agit n-transitivement sur X si
et seulement si l’action de G sur X induit une action transitive de G sur l’ensemble des
parties à n éléments de X.

6. Montrer que pour tout n ∈ N∗, Sn agit n-transitivement sur {1, . . . , n}, et que si n ≥ 3
alors An agit (n − 2)-transitivement sur {1, . . . , n} mais pas (n − 1)-transitivement.

Remarque. On peut montrer qu’à part les groupes symétriques et alternés d’ordres suffi-
samment grands, il n’y a qu’un nombre fini de groupes finis de permutations qui agissent
n-transitivement pour n = 4 ou 5 (groupes de Mathieu). Pour n ≥ 6, il n’y a plus que les
groupes symétriques et alternés d’ordres suffisamment grands.
Exercice 21 (Critère de simplicité d’Iwasawa). Soit G un groupe agissant doublement tran-
sitivement sur un ensemble non vide X et notons H le noyau de cette action. Supposons que
G = D(G) et qu’il existe x ∈ X tel que S = Stab(x) admet un sous-groupe distingué abélien A
tel que G soit engendré par les conjugués de A. On va montrer que G/H est un groupe simple.

1. Justifier qu’il suffit de montrer que les seuls sous-groupes distingués K de G tels que
H ⊂ K sont H et G.

2. Soit donc K ◁ G tel que H ⊂ K. Justifier que KS est un sous-groupe de G.

3. En déduire que KS = S ou KS = G.

4. Supposons que KS = S. Montrer que K agit trivialement sur X, puis que K = H.

5. Supposons que KS = G. Montrer que KA ◁ G puis que KA = G.

6. En utilisant le second théorème d’isomorphisme, montrer que G/K est abélien et conclure.
Remarque. Le critère d’Iwasawa peut être utilisé pour montrer la simplicité des groupes An

pour n ≥ 5 et des groupes PSLn(K) pour n ≥ 3 ou |K| > 3.
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