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A. Bailleul Cours-TD de théorie des groupes

Actions de groupes

Dans toute cette feuille, G désigne un groupe.

1 Actions de groupe

Définition 1.1. Soit X un ensemble non vide. On dit que G agit (¢ gauche) sur X, et on
note G ~ X, lorsqu’il existe une application

GxX — X
(9,7) = gx

vérifiant :

1. Ve e X,ex=1x.

2. ¥g,9 € G,Vr € X,g9.(¢".x) = (99').x.
Exemple 1.2.

1. G agit trivialement sur n’importe quel ensemble non vide.

2. G agit sur lui-méme par translation a gauche : Vg,¢' € G, 9.9/ = g¢'. 1l agit aussi sur
chacun de ses quotients de cette maniere.

3. G agit sur I’ensemble de ses sous-groupes par conjugaison : Vg € GG,VH sous-groupe de GG, g.H =
gHg™ .

4. Si H est un sous-groupe distingué de G, G agit sur H par conjugaison : Vg € G,Vh €
H,g.h = ghg™'.

5. Aut(@G) agit sur G : Yy € Aut(G),Vg € G, p.g = ¢(g).
6. Si E est un espace vectoriel, GL(E) agit sur £ : Vf € GL(E),Vx € E, f.g = f(g).
7. Pour tout n > 1, &,, agit de maniére naturelle sur {1,...,n}.

/N Certaines actions « naturelles » sont en fait des actions & droite. Par exemple, pour X un
ensemble non vide, on a envie de dire que &,, agit sur X" par

o.(21,. 5 2n) = (To(), - > To(m))s
pour 0 € S, et x = (x1,...,2,) € X", mais pour 7 € S,, on a
J.(T..CE) = (T.(x.r(l), c. ,$T(n)) = (.CET(U(l)), N ,Z‘T(U(l))) =T0.Z.

Ici, une action a gauche proche est donnée par
. = (Ig—l(l), c. ,xg—l(n)).
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Proposition 1.3. Soit X un ensemble non vide. La donnée d’une action de groupe de G sur
X est équivalente a celle d’un morphisme de groupes G — S(X).

Démonstration. Si G ~ X alors pour tout g € G on dispose de p, € &(X) défini par py(z) = g.x
pour x € X. La définition d'une action de groupe signifie que g — p, est un morphisme de
groupes de G dans &(X). Réciproquement, si p : G — &(X) est un morphisme de groupes
alors on définit une action de groupes de G sur X par g.x = p(g)(z) pour g € G,z € X. O

Corollaire 1.4 (Théoreme de Cayley). Si G est fini d’ordre n, alors il existe un plongement
G — G,.

Démonstration. L’action par translation a gauche de G sur lui-méme donne un morphisme de
groupes ¢ : G — &,,. Mais ce morphisme est injectif puisque si ¢(g) = idg alors en particulier
ge = e, autrement dit g = e. O

Définition 1.5. Soit X un ensemble non vide sur lequel G agit. L’action est dite :

1. transitive lorsque Y,y € X,3g € G,g.x = y.  (« On peut passer d’un élément d
n’importe quel autre »)

2. simplement transitive lorsque Vr,y € X,3lg € G,g.x =y. (¢« On peut passer d’un
élément a n’importe quel autre d’une maniére unique »)

3. fidéle lorsque le morphisme G — &(X) est injectif.  (« Seul le neutre agit triviale-
ment »)

4. libre lorsque Vg € G\ {e},Vo € X,g.x #x. (« Seul le neutre a des points fizes »)
Remarque 1.6. Une action libre est fidele.

Exercice 1. Parmi les exemples de [’Exemple 1.2, dire si les actions sont transitives, simple-
ment transitives, fidéles ou libres.

Exercice 2. Montrer qu’une action est simplement transitive si et seulement si elle est tran-
sitive et libre. Donner un exemple d’action fidele qui n’est pas libre.

2 Orbites et stabilisateurs

Dans cette section, X est un ensemble non vide sur lequel G agit.

Définition 2.1. Six € X, ['orbite de x sous l'action de G est
Orb(z) ={g9x|ge G} C X
et le stabilisateur de x est
Stab(z) ={g € G| gx =2z} C G.
Si g € G, le fizxateur de g est
Fix(g) ={r € X | g.x = z}.
On appelle espace-quotient, et on note G\X, l’ensemble des orbites pour cette action.
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Exemple 2.2.

1. L’action de G sur X est transitive si et seulement si I'orbite de n’importe quel élément
est X.

2. Pour laction de G sur lui-méme par conjugaison, l'orbite de g € G est C(g) = {¢g'gg’ " |

g € G}, la classe de conjugaison de g, et son stabilisateur est Z(g) = {¢’ € G |
d'99 ' = g}, le centralisateur de g. De méme, le fixateur de g € G est son centralisateur.

3. Si H est un sous-groupe de G alors le normalisateur de H dans G est le stabilisateur
de H pour 'action de GG sur ses sous-groupes par conjugaison. C’est aussi le plus grand
sous-groupe de G dans lequel H est distingué.

4. Pour l'action de &,, sur {1,...,n}, le stabilisateur de k € {1,...,n} est I'ensemble des
permutations qui n’ont pas k dans leur support et son orbite est {1,...,n}.

Remarque 2.3. On peut reformuler 'Exercice 2 de la maniére suivante : une action est
simplement transitive si et seulement si elle est transitive et tous les stabilisateurs sont réduits
a un singleton.

Proposition 2.4 (Relations orbite-stabilisateur). Soit x € X. Alors Stab(z) est un sous-groupe
de G et il y a une bijection naturelle entre G/ Stab(z) et Orb(z). De plus, deux éléments dans
une méme orbite ont des stabilisateurs conjugués.

Démonstration. La bijection est donnée par
gStab(x) — g.x,

dont on vérifie qu’elle est bien définie. Si y = g.z alors Stab(y) = g Stab(x)g~". O

AT n’y a aucune raison pour que Stab(z) soit distingué dans G, donc il n’y a en général pas
de structure naturelle de groupe sur G/ Stab(z) (ou sur Orb(z)).

Proposition 2.5 (« Equation aux classes »). Les orbites de X forment une partition de X.
En particulier, si X est fini et si xq,...,x, sont des représentants des orbites, alors

|X| = Z | Ofb(xz‘)|~
=1

Si de plus G est fini, on a aussi
X| = 321G/ Stab(a,).
i=1

Théoréme 2.6 (Burnside). Supposons que G et X sont finis. Le nombre d’orbites pour l'action
de G sur X vaut

| = 1 X Pt

geG

Démonstration. On compte de deux manieres différentes le cardinal de 1’ensemble
{(g,2) e G x X | gx = x}.

D’un coté il vaut

>_ [ Fix(g)|

geG



et de lautre il vaut

> | Stab(z)|.

zeX
Mais d’apres la relation orbite-stabilisateur, cette derniere somme est égale a
3 |G|
| Orb(z)]

zeX

Or, si y € Orb(z) alors Orb(y) = Orb(z) et donc
|Gl ’ X’
=G :
zeZX | Orb(z)] Sitel
[

Exercice 3. Calculer le nombre de coloriages possibles des 12 pointes d’un cadran fizé avec
6 points bleus, 4 points blancs et 2 points rouges. Faire de méme quand on s’autorise a faire
tourner le cadran.

3 Applications aux p-groupes

Définition 3.1. Supposons que G est fini et soit p un nombre premier. On dit que G est un
p-groupe lorsque le cardinal de G est une puissance de p.

Lemme 3.2. Soit X un ensemble non vide sur lequel G agit. Si G est un p-groupe fini alors
X| = |X€] mod p,

ol
X¢={reX|VgeG,gz=a}= () Fix(g).

geG

Démonstration. D’apreés ’équation aux classes, on a
p q )
'
| X| =" |Orb(;)],
i=1

ol les ; sont des représentants des orbites de X sous I'action de G. Si z; € X alors | Orb(x;)| =

1, tandis que si 7; ¢ X alors | Orb(z;)| = |Stif(|mi)‘ est divisible par p puisque Stab(z;) € G. O

Proposition 3.3. Supposons que G est un p-groupe fini. Alors Z(G) # {e}.

Démonstration. Faisons agir GG sur lui-méme par conjugaison. L’ensemble des points fixes pour
cette action est exactement Z(G) et d’apres le Lemme 3.2, on a donc |G| = Z(G) mod p,
autrement dit, p | |Z(G)|. Mais |Z(G)| > 1 puisque e € Z(G) et donc |Z(G)| > p > 1. O

Lemme 3.4. Si G/Z(G) est monogéne alors G est abélien.

Démonstration. Soit xZ(G) un générateur de G/Z(G) et soit g1,92 € G. Par définition, il
existe ky, ko € Z tels que 1 Z(G) = (xZ(G))* et 9.Z(G) = (£Z(G))*2. En particulier, il existe
21,2 € Z(Q) tels que g1 = 2% 2 et gy = 2%22,. Alors

k1 +k2z

g192 = % 122 = g201

et donc g; et go commutent. O]



Corollaire 3.5. Soit p un nombre premier. Tout groupe d’ordre p* est abélien.

Démonstration. Soit G un groupe d’ordre p*. D’aprés la Proposition 3.3, Z(G) est un sous-
groupe non trivial de G. D’apres le théoreme de Lagrange, son cardinal ne peut étre que p ou
p?. On va montrer qu’il s’agit de p?, ce qui voudra dire que G = Z(G), autrement dit, que G
est abélien.

Si par absurde |Z(G)| = p alors, toujours d’apres le théoreme de Lagrange, |G/Z(G)| = p.
Mais alors G/Z(G) est cyclique, ce qui implique que G est abélien d’apres le Lemme 3.4, ce qui
est finalement absurde puisqu’on a supposé |Z(G)| = p. O

Théoréme 3.6 (Cauchy). Si G est un groupe fini d’ordre divisible par le nombre premier p
alors G admet un élément d’ordre p.

Démonstration. Faisons agir H = Z/pZ sur

X={(g,.-.,9) €G" | g1...9p=¢}

par décalage d’indice modulo p, autrement dit,

k-(gh B 7gp) = (gma ce 79@)

D’apres le Lemme 3.2, on a |X| = |X*| mod p. Mais X est constitué des éléments de X
a coordonnées constantes, c’est-a-dire des p-uplets (g,...,g) avec ¢? = e. Or |X| = |G]P~?
puisqu’on peut prendre n’importe quelles p—1 premieres coordonnées pour un élément de X et la
derniére est alors uniquement déterminée. Ainsi |X#| est divisible par p. Enfin, (e, ..., e) € X
donc | XH| > pet il existe g € G\ {e} tel que g? = e, c’est-a-dire que g est un élément d’ordre
p de G. O

Le lemme de Cauchy est un cas particulier des résultats suivants.

Théoréme 3.7 (Sylow). Soit p un nombre premier. Supposons que G est fini d’ordre p™m avec
m,n € N et p ne divisant pas m. Alors G posséde des p-sous-groupes de Sylow, c’est-a-dire
des sous-groupes d’ordre p". De plus, ceuz-ci sont tous conjugués dans G et leur nombre n,
vérifie n, = 1 mod p et n, | m.

Remarque 3.8. Les théoremes de Sylow ne sont pas explicitement au programme mais sont
suffisamment classiques pour étre abordés. On peut les démontrer a I'aide d’actions de groupes
bien choisies, voir les exercices.

4 Exercices

Exercice 4. Soit K un corps et n € N*. Déterminer une action non triviale de &, sur
K[Xy,...,X,)]. Faire de méme avec le groupe GL,,(K).

Exercice 5. Déterminer les orbites de l'action de GL,(C) par conjugaison sur l’ensemble des
matrices diagonalisables de M.,,(C).

Exercice 6. Soit p un nombre premier et G un groupe d’ordre p*. Montrer que G ~ Z/p*Z ou
G ~7/pZ x Z]pZ.

Exercice 7. Soit G un groupe fini d’ordre n et v : G — &,, le plongement de Cayley. Pour
g € G, calculer (1(g)). A quelle condition le plongement ¢ est-il d valeurs dans U, ¢
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Exercice 8. Soit n > 2. Montrer que tout sous-groupe d’indice n de &, est isomorphe a
S,_1 (on pourra distinguer les cas n < 5 et n > 5). Déterminer un plongement &,, — A, 2.
FExiste-t-il un plongement &, — A, 11 ¢

Exercice 9. Soit G un groupe fini d’ordre n, p le plus petit facteur premier de n et H un sous-
groupe de G d’indice p. Montrer que H < G. (Indication : Considérer l'action par translation a

gauche de G sur G/H.)

Exercice 10. Si P est une partie de R™, on note Iso(P) l’ensemble des isométries affines f de
R" telles que f(P) = P, et Iso"(P) celles qui sont positives.

1.

AN S

Montrer que Iso(P) est un groupe pour la composition, et que Isot(P) en est un sous-
groupe distingué.

Soit A un tétraédre régulier dans R, de sommets A, B, C et D. Déterminer un morphisme
de groupes ¢ : Iso(A) — Sy.

Montrer que ¢ est bijectif. En déduire Iso™ (A).

Calculer le nombre de coloriages différents des faces d’un tétraedre régqulier avec ¢ €
{1,...,4} couleurs.

Soit maintenant C un cube dans R3. On numérote ses sommets Ay, As, As, Ay, By, By, B3, By
de sorte que les grandes diagonales du cube soient les [A; B;]. Déterminer un morphisme
de groupes ¢ : Iso(C) — &,.

Montrer que ¢ est surjectif et identifier son noyau.
Montrer que Qg+ (c) est un isomorphisme de Iso™(C) dans &,.
En déduire que Iso(C) ~ &4 X Z/27.

Calculer le nombre de coloriages différents des faces d’un cube avec ¢ € {1,...,6} cou-
leurs.

Exercice 11. Soit G un groupe fini. Notons p(G) la probabilité que deuzx éléments choisis
uniformément dans G commutent, autrement dit,

1.

2.

_ (g, h) € G* | gh = hg}|
GJ? '

p(G)

Montrer que p(Hg) = 2.
On va montrer que si G est un groupe non abélien alors p(G) < %.

(a) Justifier que si G est non abélien alors [G : Z(G)] > 4.
(b) Montrer que pour tout g € G\ {e}, |G : Z(g)] > 2.
(c) Conclure.

Exercice 12. Dans cet exercice, on va montrer les théorémes de Sylow. Soit donc p un nombre
premier et G un groupe fini d’ordre p"m avec ptm et n > 1.

1.

Décrire une action non triviale de G sur l’ensemble de ses parties de cardinal p".



2. Montrer qu’au moins une orbite a un cardinal non divisible par p et en déduire qu’un des
stabilisateurs est un p-Sylow de G.

3. Montrer que si H est un sous-groupe de G et S est un p-Sylow de G, alors il existe g € G
tel que gSg~' N H soit un p-Sylow de H. (Indication : Ecrire Uéquation aux classes pour
Uaction par translation de H sur G/S.) On admettra (cf. Feuille 4) que cela permet de
montrer que tout groupe fini admet un p-Sylow.

4. En déduire que tout p-sous-groupe de G est contenu dans un conjugué de S. En particulier,
les p-Sylow de G sont tous conjugués.

5. En faisant agir G par conjugaison sur l’ensemble de ses p-Sylow, en déduire que n, =
1 mod p et n, | m.

6. Montrer qu’'un p-Sylow de G est distingué dans G si et seulement s’il est le seul p-Sylow

de G.

Exercice 13. Montrer qu’un groupe d’ordre 35 est cyclique et qu’un groupe d’ordre 48 n’est
pas simple.

Exercice 14. Montrer qu’un groupe simple d’ordre 60 est isomorphe a 2s.
Exercice 15. Déterminer les 2-Sylow de A4 et ceur de Gy.
Exercice 16. Dénombrer les p-Sylow de &,,, ot p est un nombre premier.

Exercice 17. Soit p < q deuxr nombres premiers distincts. Montrer que si p{q — 1 alors tout
groupe d’ordre pq est cyclique. Dans le cas contraire, montrer qu’un groupe d’ordre pq est soit
cyclique, soit isomorphe a un produit semi-direct non abélien Z/qZ X 7] pZ.

Exercice 18. Soit G un groupe fini d’ordre p"™ ou p est un nombre premier et n € N*. Montrer
que pour tout k € {0,...,n}, G admet un sous-groupe distingué d’ordre p*. En déduire que tout
groupe d’ordre p"“m avec p{m admet des sous-groupes d’ordre p* pour tout k € {0, ... ,n}.

Exercice 19. Soit n > 2.

1. Montrer que si p € Aut(S,,) envoie les transpositions sur des transpositions, alors ¢ est
un automorphisme intérieur. (Indication : Utiliser le fait que les transpositions 7, = (11)
engendrent G,,.)

2. Soit o € G,, qui s’écrit comme produit de ny k-cycles pour 1 < k < n. Montrer que le
centralisateur de o a pour cardinal

n

1C(o)| = [] k™ ns!.

k=1
En déduire que pour n # 6, Aut(&,,) = Int(S,) ~ &,,.
Montrer que &5 possede six 5-Sylow.

En déduire un morphisme injectif G5 — Gg.

S v

Notons H limage de ce morphisme et considérons l’action par translation a gauche de
G sur &g/ H. Montrer que le morphisme associé ¢ est un automorphisme.
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7. Montrer que ¢ n’est pas intérieur. (Indication : Montrer que H n’a pas de point fize pour

Uaction naturelle sur {1,...,6} mais p(H) en a.)

Exercice 20. Soit G un groupe et X un ensemble non vide sur lequel G agit. On dit que G
agit doublement transitivement sur X lorsque pour tout x1,x2,y1,ys € X avec x1 # o et
y1 # Yy il existe g € G tel que g.x1 = y1 et g.xs = Yo.

1.

Montrer qu’un groupe agissant doublement transitivement agit transitivement. La réci-
proque est-elle vraie ¢

Montrer que si E est un espace vectoriel alors GL(E) agit doublement transitivement sur
I’ensemble des droites de F.

Montrer que si G est fini et agit doublement transitivement sur X alors

Gl = 5 3 [Fix(g)”

geG

Indication : On pourra considérer l'action naturelle de G sur X x X.
p

Montrer que si G agit doublement transitivement sur X alors pour tout x € X, Stab(x)
est un sous-groupe maximal de G. Montrer également qu’un sous-groupe distingué de G
agit trivialement ou transitivement sur X.

Plus généralement, pour n € N*, on dit que G agit n-transitivement sur X lorsque pour
x1,...,T, € X deur a deux distincts et yi,...,y, € X deux a deux distincts, il existe
g € G tel que g.x1 = y1,...,9.2, = Yn. Montrer que G agit n-transitivement sur X si
et seulement si laction de G sur X induit une action transitive de G sur l’ensemble des
parties a n éléments de X.

Montrer que pour tout n € N*, &,, agit n-transitivement sur {1,...,n}, et que si n > 3
alors A, agit (n — 2)-transitivement sur {1,...,n} mais pas (n — 1)-transitivement.

Remarque. On peut montrer qu’a part les groupes symétriques et alternés d’ordres suffi-
samment grands, il n’y a qu’un nombre fini de groupes finis de permutations qui agissent
n-transitivement pour n = 4 ou 5 (groupes de Mathieu). Pour n > 6, il n’y a plus que les
groupes symétriques et alternés d’ordres suffisamment grands.

Exercice 21 (Critere de simplicité d’Iwasawa). Soit G un groupe agissant doublement tran-
sitivement sur un ensemble non vide X et notons H le noyau de cette action. Supposons que
G = D(G) et qu’il existe x € X tel que S = Stab(x) admet un sous-groupe distingué abélien A
tel que G soit engendré par les conjugués de A. On va montrer que G/H est un groupe simple.

1.

S v o

Justifier qu’il suffit de montrer que les seuls sous-groupes distingués K de G tels que
H C K sont H et G.

Soit donc K <G tel que H C K. Justifier que KS est un sous-groupe de G.

En déduire que KS =S ou KS =G.

Supposons que KS = S. Montrer que K agit trivialement sur X, puis que K = H.
Supposons que KS = G. Montrer que KA <G puis que KA = G.

En utilisant le second théoreme d’isomorphisme, montrer que G /K est abélien et conclure.

Remarque. Le critere d’Iwasawa peut étre utilisé pour montrer la simplicité des groupes 2,
pour n > 5 et des groupes PSL,(K) pour n > 3 ou |K| > 3.
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