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Groupes symétriques et alternés

Dans cette feuille, on étudie une famille importante de groupes finis, les groupes symétriques
et alternés. Historiquement (Lagrange, Galois), les premiers groupes finis considérés étaient des
groupes constitués de permutations. Ce point de vue est justifié par le théoreme de Cayley, que
I’on verra plus tard.

1 Permutations

Définition 1.1. Soit E un ensemble non vide. Une permutation de E est une bijection de
E dans E. On note S(E) (S gothique) I’'ensemble des permutations de E.

Exemple 1.2.

1. idg est toujours une permutation de E.

2. n+ n+ 1 est une permutation de Z.

3. [:{1,2} — {1,2} définie par f(1) =2 et f(2) =1 est une permutation de {1,2}.
Proposition 1.3. Soit E un ensemble non vide. (&(F),0) est un groupe de neutre idg.

/\ La loi de groupe étant la composition, la permutation o7 consiste a appliquer d’abord 7
puis o.

Définition 1.4. Lorsque E = {1,...,n} avecn € N*, on appelle groupe symétrique d’indice
n, et on note &, le groupe S(E).

Remarque 1.5. Si F est un ensemble a n éléments, alors &(F) ~ &,, via n’importe quelle
bijection entre E et {1,...,n}. Explicitement, si f : {1,...,n} — E est une bijection alors
I'application envoyant o sur f(o) définie par

flo)(@) = fH(o(f(x))
est un isomorphisme de groupes entre &(E) et &,,.

Notation. Soit n € N* et 0 € G,,. On note
1 2 .. n
o(l) o(2) ... o(n)

Proposition 1.6. Pour tout n € N*, &,, est de cardinal n!.

pour décrire o.

Remarque 1.7. Inutile de disserter sur ’ensemble vide. Il existe effectivement une permutation
de Pensemble vide (qui est la fonction vide), et le groupe symétrique associé a bien 0! = 1
¢lément, mais ¢a n’a strictement aucun intérét pour nous.

Exercice 1. Soit E un ensemble a n éléments avec n > 1. Combien y a-t-il de bijections de E
dans {1,...,n} ?



2 Supports et cycles

On fixe n € N* entier.

Définition 2.1. Soit k € {2,...,n}. Un k-cycle est un élément o de &, tel qu’il existe
ai,...,ax € {1,...,n} deux a deux distincts tels que

Vi e {17 s 7k}a U(ai) = Qj+1,
ou Qg1 = ay, et
Vie{l,...,n}\{a,...,ax},0(j) = J.
On note alors o = (ay ... ag). Un 2-cycle est aussi appelé une transposition.
Proposition 2.2. Un k-cycle dans S,, est d’ordre k.

Définition 2.3. Soit 0 € &,,. Le support de o est {i € {1,...,n} | o(i) # i}, son complé-
mentaire est [’ensemble des points fixes de o.

Exemple 2.4.
1. Le support de id est 0.

2. Le support du k-cycle (a; ... a) est {aq,...,ax}.

Proposition 2.5. Soit 0,00 € S,,. Alors k € {1,...,n} est point fize de oy si et seulement si

o(k) est point fize de cogo™!.

Corollaire 2.6. On a
S, sin <2,
2(85) = {{id} sin > 3.

En particulier, G,, est non abélien pour n > 3.

Démonstration. Le résultat est clair pour n = 1 et n = 2. Pour n > 3, pour tout k € {1,...,n},
il existe une permutation oy € &, admettant k pour unique point fixe. Un élément o du
centre commute avec une telle permutation, et donc o (k) est point fixe de o0, c’est-a-dire que
o(k) =k. O

Proposition 2.7 (Fondamentale). Soit 0 € S,, et (ay ... ax) un k-cycle. Alors
olay ... ap)o ™t = (o(ar) ... o(ay)).
Proposition 2.8. Soit 01,00, € &,,. Si leurs supports sont disjoints alors o1 et oo commutent.

Théoréme 2.9. Toute permutation o € S,, admet une décomposition en produit de cycles a
supports disjoints. De plus, cette décomposition est unique a 'ordre prés des facteurs.

Démonstration. Posons la relation ~ définie sur {1,...,n} par
i~j e IkeN, of@i) =]

On vérifie immédiatement qu’il s’agit d’une relation d’équivalence sur {1, ..., n}, dont les classes
d’équivalence forment donc une partition de {1,...,n}. Sur chacune de ces classes, o agit
comme un cycle de longueur le cardinal de la classe (en disant qu'un 1-cycle est 'identité). La
concaténation de tous ces cycles coincide donc avec o, et leurs supports sont disjoints puisque les
classes d’équivalence sont disjointes. L’unicité vient du fait que ’écriture de o comme produit
de cycles a supports disjoints mene & une partition de {1, ..., n} selon les supports de ces cycles
qui coincide avec la partition ci-dessus. O



Exemple 2.10. En pratique, on « suit les fleches » dans I’écriture en ligne de 0. Par exemple,

si
(1 2 3 45 6 7 8
~\3 46 8157 2)

on part de 1 pour obtenir le cycle (1365), puis on part du premier élément qui n’a pas encore
été parcouru, ici 2, qui donne le cycle (24 8). Il ne reste que 7, qui est point fixe de 0. Finalement
onaoc=(1365)(248).

Corollaire 2.11. Soit 0 € &,,. Alors l'ordre de o est le PPCM des longueurs des cycles dans
la décompositions de o en produit de cycles a supports disjoints.

Définition 2.12. Soit o € &,, dont la décomposition en cycles a supports disjoints est constituée
de 1y cycles de longueur 1 (points fizes), ly transpositions, ..., l, n-cycles. Le type de o est

(I, 1),

Corollaire 2.13. Deux permutations dans S, sont conjuguées si et seulement si elles ont le
méme type.

Démonstration. Pour le sens direct, il suffit d’utiliser le Proposition 2.7 et le fait que le conjugué
d’un produit d’éléments qui commutent est le produit de leurs conjugués.

Pour le sens réciproque, soit 0,0’ € &,, de type (ly,...,1,). On construit une permutation
T € 6, en spécifiant comment elle agit sur chaque terme des cycles de o. Si (a; ... ai) et
(by ... by) sont des k-cycles de o et ¢’ respectivement, on défini 7(a;) = b; pour 1 <i < k. En
procédant ainsi pour chaque cycle de o, on obtient finalement 707~ = o, O

Corollaire 2.14. Toute permutation dans S,, peut s’écrire comme un produit de transpositions.
Autrement dit, les transpositions engendrent le groupe &,,.

Démonstration. 11 suffit de montrer que tout cycle s’écrit comme produit de transpositions, ce
qui se voit par exemple avec

(ay ... ar) = (a1 az2)(azas) ... (ax_1ax).

O
/A La décomposition n’est pas unique en général, seule la parité du nombre de transpositions
nécessaires est bien définie (voir la discussion sur la signature plus bas).

Exemple 2.15. Reprenons la permutation o de I’'Exemple 2.10. Alors
o = (13)(36)(65)(24)(48).

Mais on a aussi

o= (13)(36)(65)(28)(24).

3 Signature d’une permutation

On fixe n € N* entier.

Définition 3.1. Soit 0 € S,,. Une inversion de o est une paire {i,j} C {1,...,n} aveci # j
telle que % < 0 (c’est-a-dire telle que (i,j) et (o(i),0(j)) ne soient pas ordonnés dans le
méme sens). Le nombre d’inversions de o est noté 1(0). La signature de o est

(o) = (~1)'.

3



Proposition 3.2. Soit 0 € G,,. Alors

e(o) = o(j) — (i)
Théoréme 3.3. La signature est un morphisme de groupes &,, — {—1,1}, surjectif si n > 2.

Démonstration. Pour le caractere morphique, on écrit, d’apres la Proposition 3.2

o(r(j) = o(r()

e(or) =

{i,g}C{1,....n} ij J—1

_ o(r(3)) = o(r(@)) 7(3) = ()
{i,5}c{1,....,n},i#j T(]) - T(Z) j—i

= o(j) = o(i) 7G) = 70)
ftc{lntizi 1T pc{anbig 1T

= e(0)e(7).

Le caractere surjectif vient du fait que e(id) =1 et ((12)) = —1. .

=
3
&
3

Corollaire 3.4. Si o peut s’écrire comme produit de m transpositions, alors (o) = (
particulier, la signature d’un k-cycle est (—1)k=1.

Définition 3.5. Le groupe alterné d’indice n est

A, =kere ={o0 €6, |c(o) =1}
Proposition 3.6. Pour n > 2, le groupe 2, est d’ordre %'
Proposition 3.7. Pour n > 3, 2, est engendré par les 3-cycles.

Démonstration. Si n = 3 le résultat est clair. Si n > 4, il suffit d’observer que, pour a,b, c,d €
{1,...,n} deux a deux distincts, on a

(abc) = (ab)(ac)

et
(abc)(abd) = (ac)(bd),

et donc que tout produit d’'un nombre pair de transpositions peut s’écrire comme produit de
3-cycles. O]

Théoréme 3.8. Sin # 4, A, est un groupe simple.
Corollaire 3.9. Sin # 4, les sous-groupes distingués de &,, sont {id}, 2, et S,,.
Pour la démonstration, voir les exercices. Il y a une exception pour n = 4.
Définition 3.10. Le groupe de Klein est
Vi ={id, (12)(34),(13)(24),(14)(23)}.

Proposition 3.11. Le groupe de Klein est un sous-groupe distingué de L4, isomorphe a (Z/27)3.
En particulier, A4 n’est pas simple.



4 Exercices

Exercice 2. Soit

(1 2 345678910
131076 95148 2/

Déterminer le type, 'ordre et la signature de o.

Exercice 3. Soit n > 2. Montrer que les familles suivantes sont génératrices de &, :
{1 ]2<i<n}, {(Gi+1)]|1<i<n-—1}, {(12),(12...n)}.

Exercice 4. Montrer qu'une famille T de transpositions engendrant &,, contient au moins
n—1 éléments. (Indication : Considérer le graphe de sommets {1,...,n} dont les arétes relient
deuz éléments qui apparaissant dans une méme transposition de T et montrer que le graphe est
connexe si et seulement si la famille T engendre S,,.)

Exercice 5. Soit n,k > 2 des entiers avec k < n. Combien y a-t-il de k-cycles dans &,, ¢
Exercice 6. Identifier la structure des groupes 2Aq,2As et As.

Exercice 7. Montrer que A4 n'admet pas de sous-groupe d’ordre 6, bien que 6 divise |24].
Exercice 8. Donner un sous-groupe distingué de Vy qui n’est pas distingué dans 2.

Exercice 9. Déterminer 20,/Vy et &4/Vy. (Indication : Pour le second, observer comment les
éléments de V sont conjugués par les éléments de S,.)

Exercice 10. Soit n > 2 et 0 € U,,. Etablir un lien entre les classes de conjugaison de o dans
G, et celle dans A,,. Indication : Distinguer les cas ou o commute ou non avec une permutation
impaire fizée.

Exercice 11. Soit n > 2. Dénombrer le nombre de classes de conjugaison dans &,,.

Remarque. Hardy et Ramanujan ont montré que ce nombre p(n) vérifie

L /=
p(n) e 4n\/§e 3

Exercice 12. 1. Montrer que s et A3 sont simples.
2. Montrer que, pour n > 5, les 3-cycles sont conjugués entre eur dans 2.
3. Soit H <%, avecn >5 et H # {id}. On va montrer que H = 2,,.

(a) Montrer que si H contient un 3-cycle alors H = 2,,.

(b) Soit 0 € H \ {id} avec un nombre de point five maximal. Montrer que si o n’est
pas un 3-cycle, alors un commutateur bien choisi de o a plus de points fizes que o.
Indication : Considérer a part les cas ou o est produilt de transpositions a supports
disjoints et le cas ou o possede un cycle qui n’est pas de longueur 2.

(c) Conclure

4. Montrer que les sous-groupes distingués de &,,, pour n # 4, sont {id}, 2, et &,,.



Exercice 13. Soit n € N*. Déterminer D(S,) et D(,). Montrer que si G est un groupe
abélien et f : &, — G est un morphisme de groupes, alors f se factorise par la signature :
f=poeoup:{-1,1} = G est un morphisme de groupes.

Exercice 14. Soit n > 2. Est-ce que &,, ~ U, X /27 ?

Exercice 15. Soit K un corps, n > 2 et 0 € &,,. La matrice de permutation associée est
Py = (ai;)1<ij<n € Mn(K) ot
1 sii— ol
G = { sii=o0(j)

0 sinon.

1. Montrer que o — P, est un morphisme de groupes de &,, dans GL,(K).
2. Calculer det P, pour o € &,,.

Exercice 16. 1. Pour tout n € N*, on note g(n) le plus grand ordre d’un élément de &,,.
Montrer que g est croissante et que n < g(n) < nl. Déterminer le plus petit entier n tel
que g(n) > n.

2. Soit py,...,p. des nombres premiers distincts et ay,...,a, € N* tels que Y[_, pi" < n.
Montrer que g(n) > T1i_, pi".

3. On va montrer que si 0 € S, est d’ordre k = [[_, pi", alors >I_, pi* < n.

(a) Par l'absurde, prenons n minimal tel qu’il existe une permutation o le contredisant.
Montrer que o n’a pas de point fize.

(b) Supposons que o est produit de cycles a supports disjoints de longueurs ny, ..., n,.
Montrer que ny, ..., n, sont des puissances de nombres premiers. (Dans le cas contraire,
on écrira ny = ab avec a > 2 et b > 2 premiers entre eux et on construira o' € &,
qui est le produit de cycles a supports disjoints de longueurs a,b,ns,...,n, et est

d’ordre k)

(¢c) Montrer que les n; sont premiers entre eux deuz d deux et conclure.

4. En déduire que
g(n) =max{k e N | k=[] pi, > pf" <n}.
i=1 i=1
5. Montrer que pour tout € > 0 il existe une constante C' > 0 telle que pour tout n > 2, on
a g(n) < Ce™™. En particulier, g(n) = o(n!) quand n — +oo.

Remarque. A l'aide du théoréme des nombres premiers, Landau a montré que

Ing(n) N vn Inn.

Exercice 17. Le jeu du taquin consiste a déplacer n®> — 1 tuiles et un espace vide formant un
carré de taille n x n afin d’ordonner les chiffres apparaissant sur les tuiles de 1 a n*>—1 (o que

soit lespace vide). Montrer que le jeu admet une solution depuis n’importe quelle configuration
de départ si et seulement sin est pair.

Exercice 18. Soitn > 2 et pour 2 < k < n, notons ¢, = (12 ... k). Montrer que tout élément
de &, admet une écriture unique sous la forme

kn k2
0, ©---00,



