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Groupes symétriques et alternés

Dans cette feuille, on étudie une famille importante de groupes finis, les groupes symétriques
et alternés. Historiquement (Lagrange, Galois), les premiers groupes finis considérés étaient des
groupes constitués de permutations. Ce point de vue est justifié par le théorème de Cayley, que
l’on verra plus tard.

1 Permutations
Définition 1.1. Soit E un ensemble non vide. Une permutation de E est une bijection de
E dans E. On note S(E) (S gothique) l’ensemble des permutations de E.
Exemple 1.2.

1. idE est toujours une permutation de E.

2. n 7→ n + 1 est une permutation de Z.

3. f : {1, 2} → {1, 2} définie par f(1) = 2 et f(2) = 1 est une permutation de {1, 2}.
Proposition 1.3. Soit E un ensemble non vide. (S(E), ◦) est un groupe de neutre idE.

!△ La loi de groupe étant la composition, la permutation στ consiste à appliquer d’abord τ
puis σ.
Définition 1.4. Lorsque E = {1, . . . , n} avec n ∈ N∗, on appelle groupe symétrique d’indice
n, et on note Sn, le groupe S(E).
Remarque 1.5. Si E est un ensemble à n éléments, alors S(E) ≃ Sn via n’importe quelle
bijection entre E et {1, . . . , n}. Explicitement, si f : {1, . . . , n} → E est une bijection alors
l’application envoyant σ sur f̃(σ) définie par

f̃(σ)(x) = f−1(σ(f(x)))

est un isomorphisme de groupes entre S(E) et Sn.
Notation. Soit n ∈ N∗ et σ ∈ Sn. On note(

1 2 . . . n
σ(1) σ(2) . . . σ(n)

)
pour décrire σ.
Proposition 1.6. Pour tout n ∈ N∗, Sn est de cardinal n!.
Remarque 1.7. Inutile de disserter sur l’ensemble vide. Il existe effectivement une permutation
de l’ensemble vide (qui est la fonction vide), et le groupe symétrique associé a bien 0! = 1
élément, mais ça n’a strictement aucun intérêt pour nous.
Exercice 1. Soit E un ensemble à n éléments avec n ≥ 1. Combien y a-t-il de bijections de E
dans {1, . . . , n} ?
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2 Supports et cycles
On fixe n ∈ N∗ entier.

Définition 2.1. Soit k ∈ {2, . . . , n}. Un k-cycle est un élément σ de Sn tel qu’il existe
a1, . . . , ak ∈ {1, . . . , n} deux à deux distincts tels que

∀i ∈ {1, . . . , k}, σ(ai) = ai+1,

où ak+1 = a1, et
∀j ∈ {1, . . . , n} \ {a1, . . . , ak}, σ(j) = j.

On note alors σ = (a1 . . . ak). Un 2-cycle est aussi appelé une transposition.

Proposition 2.2. Un k-cycle dans Sn est d’ordre k.

Définition 2.3. Soit σ ∈ Sn. Le support de σ est {i ∈ {1, . . . , n} | σ(i) ̸= i}, son complé-
mentaire est l’ensemble des points fixes de σ.

Exemple 2.4.

1. Le support de id est ∅.

2. Le support du k-cycle (a1 . . . ak) est {a1, . . . , ak}.

Proposition 2.5. Soit σ, σ0 ∈ Sn. Alors k ∈ {1, . . . , n} est point fixe de σ0 si et seulement si
σ(k) est point fixe de σσ0σ

−1.

Corollaire 2.6. On a
Z(Sn) =

{
Sn si n ≤ 2,
{id} si n ≥ 3.

En particulier, Sn est non abélien pour n ≥ 3.

Démonstration. Le résultat est clair pour n = 1 et n = 2. Pour n ≥ 3, pour tout k ∈ {1, . . . , n},
il existe une permutation σ0 ∈ Sn admettant k pour unique point fixe. Un élément σ du
centre commute avec une telle permutation, et donc σ(k) est point fixe de σ0, c’est-à-dire que
σ(k) = k.

Proposition 2.7 (Fondamentale). Soit σ ∈ Sn et (a1 . . . ak) un k-cycle. Alors

σ(a1 . . . ak)σ−1 = (σ(a1) . . . σ(ak)).

Proposition 2.8. Soit σ1, σ2 ∈ Sn. Si leurs supports sont disjoints alors σ1 et σ2 commutent.

Théorème 2.9. Toute permutation σ ∈ Sn admet une décomposition en produit de cycles à
supports disjoints. De plus, cette décomposition est unique à l’ordre près des facteurs.

Démonstration. Posons la relation ∼ définie sur {1, . . . , n} par

i ∼ j ⇔ ∃k ∈ N, σk(i) = j.

On vérifie immédiatement qu’il s’agit d’une relation d’équivalence sur {1, . . . , n}, dont les classes
d’équivalence forment donc une partition de {1, . . . , n}. Sur chacune de ces classes, σ agit
comme un cycle de longueur le cardinal de la classe (en disant qu’un 1-cycle est l’identité). La
concaténation de tous ces cycles coïncide donc avec σ, et leurs supports sont disjoints puisque les
classes d’équivalence sont disjointes. L’unicité vient du fait que l’écriture de σ comme produit
de cycles à supports disjoints mène à une partition de {1, . . . , n} selon les supports de ces cycles
qui coïncide avec la partition ci-dessus.
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Exemple 2.10. En pratique, on « suit les flèches » dans l’écriture en ligne de σ. Par exemple,
si

σ =
(

1 2 3 4 5 6 7 8
3 4 6 8 1 5 7 2

)
,

on part de 1 pour obtenir le cycle (1 3 6 5), puis on part du premier élément qui n’a pas encore
été parcouru, ici 2, qui donne le cycle (2 4 8). Il ne reste que 7, qui est point fixe de σ. Finalement
on a σ = (1 3 6 5)(2 4 8).

Corollaire 2.11. Soit σ ∈ Sn. Alors l’ordre de σ est le PPCM des longueurs des cycles dans
la décompositions de σ en produit de cycles à supports disjoints.

Définition 2.12. Soit σ ∈ Sn dont la décomposition en cycles à supports disjoints est constituée
de l1 cycles de longueur 1 (points fixes), l2 transpositions, . . ., ln n-cycles. Le type de σ est
(l1, . . . , ln).

Corollaire 2.13. Deux permutations dans Sn sont conjuguées si et seulement si elles ont le
même type.

Démonstration. Pour le sens direct, il suffit d’utiliser le Proposition 2.7 et le fait que le conjugué
d’un produit d’éléments qui commutent est le produit de leurs conjugués.

Pour le sens réciproque, soit σ, σ′ ∈ Sn de type (l1, . . . , ln). On construit une permutation
τ ∈ Sn en spécifiant comment elle agit sur chaque terme des cycles de σ. Si (a1 . . . ak) et
(b1 . . . bk) sont des k-cycles de σ et σ′ respectivement, on défini τ(ai) = bi pour 1 ≤ i ≤ k. En
procédant ainsi pour chaque cycle de σ, on obtient finalement τστ−1 = σ′.

Corollaire 2.14. Toute permutation dans Sn peut s’écrire comme un produit de transpositions.
Autrement dit, les transpositions engendrent le groupe Sn.

Démonstration. Il suffit de montrer que tout cycle s’écrit comme produit de transpositions, ce
qui se voit par exemple avec

(a1 . . . ak) = (a1 a2)(a2 a3) . . . (ak−1ak).

!△ La décomposition n’est pas unique en général, seule la parité du nombre de transpositions
nécessaires est bien définie (voir la discussion sur la signature plus bas).

Exemple 2.15. Reprenons la permutation σ de l’Exemple 2.10. Alors

σ = (1 3)(3 6)(6 5)(2 4)(4 8).

Mais on a aussi
σ = (1 3)(3 6)(6 5)(2 8)(2 4).

3 Signature d’une permutation
On fixe n ∈ N∗ entier.

Définition 3.1. Soit σ ∈ Sn. Une inversion de σ est une paire {i, j} ⊂ {1, . . . , n} avec i ̸= j

telle que σ(j)−σ(i)
j−i

< 0 (c’est-à-dire telle que (i, j) et (σ(i), σ(j)) ne soient pas ordonnés dans le
même sens). Le nombre d’inversions de σ est noté I(σ). La signature de σ est

ε(σ) = (−1)I(σ).
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Proposition 3.2. Soit σ ∈ Sn. Alors

ε(σ) =
∏

{i,j}⊂{1,...,n},i ̸=j

σ(j) − σ(i)
j − i

.

Théorème 3.3. La signature est un morphisme de groupes Sn → {−1, 1}, surjectif si n ≥ 2.

Démonstration. Pour le caractère morphique, on écrit, d’après la Proposition 3.2

ε(στ) =
∏

{i,j}⊂{1,...,n},i ̸=j

σ(τ(j)) − σ(τ(i))
j − i

=
∏

{i,j}⊂{1,...,n},i ̸=j

σ(τ(j)) − σ(τ(i))
τ(j) − τ(i)

τ(j) − τ(i)
j − i

=
∏

{i,j}⊂{1,...,n},i ̸=j

σ(j) − σ(i)
j − i

∏
{i,j}⊂{1,...,n},i ̸=j

τ(j) − τ(i)
j − i

= ε(σ)ε(τ).

Le caractère surjectif vient du fait que ε(id) = 1 et ε((1 2)) = −1.

Corollaire 3.4. Si σ peut s’écrire comme produit de m transpositions, alors ε(σ) = (−1)m. En
particulier, la signature d’un k-cycle est (−1)k−1.

Définition 3.5. Le groupe alterné d’indice n est

An = ker ε = {σ ∈ Sn | ε(σ) = 1}.

Proposition 3.6. Pour n ≥ 2, le groupe An est d’ordre n!
2 .

Proposition 3.7. Pour n ≥ 3, An est engendré par les 3-cycles.

Démonstration. Si n = 3 le résultat est clair. Si n ≥ 4, il suffit d’observer que, pour a, b, c, d ∈
{1, . . . , n} deux à deux distincts, on a

(a b c) = (a b)(a c)

et
(a b c)(a b d) = (a c)(b d),

et donc que tout produit d’un nombre pair de transpositions peut s’écrire comme produit de
3-cycles.

Théorème 3.8. Si n ̸= 4, An est un groupe simple.

Corollaire 3.9. Si n ̸= 4, les sous-groupes distingués de Sn sont {id},An et Sn.

Pour la démonstration, voir les exercices. Il y a une exception pour n = 4.

Définition 3.10. Le groupe de Klein est

V4 = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Proposition 3.11. Le groupe de Klein est un sous-groupe distingué de A4, isomorphe à (Z/2Z)2.
En particulier, A4 n’est pas simple.
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4 Exercices
Exercice 2. Soit

σ =
(

1 2 3 4 5 6 7 8 9 10
3 10 7 6 9 5 1 4 8 2

)
.

Déterminer le type, l’ordre et la signature de σ.

Exercice 3. Soit n ≥ 2. Montrer que les familles suivantes sont génératrices de Sn :

{(1 i) | 2 ≤ i ≤ n}, {(i i + 1) | 1 ≤ i ≤ n − 1}, {(1 2), (1 2 . . . n)}.

Exercice 4. Montrer qu’une famille T de transpositions engendrant Sn contient au moins
n −1 éléments. (Indication : Considérer le graphe de sommets {1, . . . , n} dont les arêtes relient
deux éléments qui apparaissant dans une même transposition de T et montrer que le graphe est
connexe si et seulement si la famille T engendre Sn.)

Exercice 5. Soit n, k ≥ 2 des entiers avec k ≤ n. Combien y a-t-il de k-cycles dans Sn ?

Exercice 6. Identifier la structure des groupes A1,A2 et A3.

Exercice 7. Montrer que A4 n’admet pas de sous-groupe d’ordre 6, bien que 6 divise |A4|.

Exercice 8. Donner un sous-groupe distingué de V4 qui n’est pas distingué dans A4.

Exercice 9. Déterminer A4/V4 et S4/V4. (Indication : Pour le second, observer comment les
éléments de V4 sont conjugués par les éléments de S4.)

Exercice 10. Soit n ≥ 2 et σ ∈ An. Établir un lien entre les classes de conjugaison de σ dans
Sn et celle dans An. Indication : Distinguer les cas où σ commute ou non avec une permutation
impaire fixée.

Exercice 11. Soit n ≥ 2. Dénombrer le nombre de classes de conjugaison dans Sn.

Remarque. Hardy et Ramanujan ont montré que ce nombre p(n) vérifie

p(n) ∼
n→+∞

1
4n

√
3

eπ
√

2n
3 .

Exercice 12. 1. Montrer que A2 et A3 sont simples.

2. Montrer que, pour n ≥ 5, les 3-cycles sont conjugués entre eux dans An.

3. Soit H ◁ An, avec n ≥ 5 et H ̸= {id}. On va montrer que H = An.

(a) Montrer que si H contient un 3-cycle alors H = An.
(b) Soit σ ∈ H \ {id} avec un nombre de point fixe maximal. Montrer que si σ n’est

pas un 3-cycle, alors un commutateur bien choisi de σ a plus de points fixes que σ.
Indication : Considérer à part les cas où σ est produit de transpositions à supports
disjoints et le cas où σ possède un cycle qui n’est pas de longueur 2.

(c) Conclure

4. Montrer que les sous-groupes distingués de Sn, pour n ̸= 4, sont {id},An et Sn.
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Exercice 13. Soit n ∈ N∗. Déterminer D(Sn) et D(An). Montrer que si G est un groupe
abélien et f : Sn → G est un morphisme de groupes, alors f se factorise par la signature :
f = φ ◦ ε où φ : {−1, 1} → G est un morphisme de groupes.
Exercice 14. Soit n ≥ 2. Est-ce que Sn ≃ An × Z/2Z ?
Exercice 15. Soit K un corps, n ≥ 2 et σ ∈ Sn. La matrice de permutation associée est
Pσ = (ai,j)1≤i,j≤n ∈ Mn(K) où

ai,j =
{

1 si i = σ(j)
0 sinon.

1. Montrer que σ 7→ Pσ est un morphisme de groupes de Sn dans GLn(K).

2. Calculer det Pσ pour σ ∈ Sn.
Exercice 16. 1. Pour tout n ∈ N∗, on note g(n) le plus grand ordre d’un élément de Sn.

Montrer que g est croissante et que n ≤ g(n) ≤ n!. Déterminer le plus petit entier n tel
que g(n) > n.

2. Soit p1, . . . , pr des nombres premiers distincts et α1, . . . , αr ∈ N∗ tels que ∑r
i=1 pαi

i ≤ n.
Montrer que g(n) ≥ ∏r

i=1 pαi
i .

3. On va montrer que si σ ∈ Sn est d’ordre k = ∏r
i=1 pαi

i , alors ∑r
i=1 pαi

i ≤ n.

(a) Par l’absurde, prenons n minimal tel qu’il existe une permutation σ le contredisant.
Montrer que σ n’a pas de point fixe.

(b) Supposons que σ est produit de cycles à supports disjoints de longueurs n1, . . . , nr.
Montrer que n1, . . . , nr sont des puissances de nombres premiers. (Dans le cas contraire,
on écrira n1 = ab avec a ≥ 2 et b ≥ 2 premiers entre eux et on construira σ′ ∈ Sn

qui est le produit de cycles à supports disjoints de longueurs a, b, n2, . . . , nr et est
d’ordre k)

(c) Montrer que les ni sont premiers entre eux deux à deux et conclure.

4. En déduire que

g(n) = max{k ∈ N | k =
r∏

i=1
pαi

i ,
r∑

i=1
pαi

i ≤ n}.

5. Montrer que pour tout ε > 0 il existe une constante C > 0 telle que pour tout n ≥ 2, on
a g(n) ≤ Ceεn. En particulier, g(n) = o(n!) quand n → +∞.

Remarque. À l’aide du théorème des nombres premiers, Landau a montré que

ln g(n) ∼
n→+∞

√
n ln n.

Exercice 17. Le jeu du taquin consiste à déplacer n2 − 1 tuiles et un espace vide formant un
carré de taille n×n afin d’ordonner les chiffres apparaissant sur les tuiles de 1 à n2 −1 (où que
soit l’espace vide). Montrer que le jeu admet une solution depuis n’importe quelle configuration
de départ si et seulement si n est pair.
Exercice 18. Soit n ≥ 2 et pour 2 ≤ k ≤ n, notons ck = (1 2 . . . k). Montrer que tout élément
de Sn admet une écriture unique sous la forme

σkn
n ◦ · · · ◦ σk2

2

où 0 ≤ ki ≤ i − 1.
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