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Groupes, sous-groupes, quotients et morphismes

Quelques références bibliographiques pour la théorie des groupes :

- Cours d’algèbre, D. Perrin, Ellipses.

- Algèbre - Le grand combat, G. Berhuy, Calvage & Mounet.

- Groupes finis et treillis de leurs sous-groupes, A. Debreil, Calvage & Mounet.

- Théorie des groupes, F. Ulmer, Ellipses.

- Théorie des groupes, J. Delcourt, Ellipses.

- An introduction to the theory of groups, J. Rotman, Springer.

1 Généralités sur les groupes
Les groupes sont des structures mathématiques que l’on retrouve partout (algèbre commutative,
algèbre linéaire, géométrie, topologie, théorie des nombres, combinatoire, etc.). La notion fut
dégagée suite notamment aux travaux de Galois sur la résolution des équations algébriques par
radicaux.

Définition 1.1. Un groupe est un couple (G, ∗) où G est un ensemble et :

1. ∗ : G×G → G est une loi de composition interne associative : ∀x, y, z ∈ G, (x∗y)∗ z =
x ∗ (y ∗ z).

2. Il existe un élément neutre e ∈ G : ∀x ∈ G, x ∗ e = e ∗ x = x.

3. Tout élément admet un inverse : ∀x ∈ G, ∃y ∈ G, x ∗ y = y ∗ x = e. L’inverse de x est
en général noté x−1.

Le groupe (G, ∗) est dit abélien (ou commutatif) lorsque la loi ∗ est commutative : ∀x, y ∈
G, x ∗ y = y ∗ x.

Remarque 1.2.

1. Quand le groupe est abélien, on note traditionnellement sa loi +, son neutre 0 et l’inverse
de x est noté −x. On omet souvent la loi ∗ quand le contexte est clair et on parle
abusivement de G comme étant un groupe.
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2. En l’absence d’inverses, on parle de monoïde, et en l’absence de neutre ou d’associativité
on parle de magma.

Exemple 1.3.

1. (Z, −) est un magma qui n’est pas un monoïde, (N, +) est un monoïde qui n’est pas un
groupe, (Z, +) est un groupe.

2. Pour n ≥ 1 entier, l’ensemble Z/nZ des classes de congruence modulo n muni de l’addition
modulaire est un groupe de neutre 0.

3. Si E est un ensemble alors l’ensemble EE des fonctions de E dans E est un monoïde muni
de la composition qui n’est en général pas un groupe. L’ensemble Bij(E) des bijections
de E dans E est un groupe pour la composition, noté S(E), de neutre idE, et appelé
groupe des permutations de E.

4. Si A est un anneau, (A, +) est un groupe de neutre 0 et (A, ×) est un monoïde qui n’est
pas un groupe. Cependant (A×, ×) est un groupe de neutre 1.

Exercice 1. Montrer que le neutre et l’inverse d’un élément sont uniques.

2 Sous-groupes
Définition 2.1. Soit (G, ∗) un groupe. Une partie H ⊂ G est un sous-groupe de G lorsque
(H, ∗H×H) est un groupe. Il est équivalent d’avoir :

1. H ̸= ∅.

2. ∀x, y ∈ H, x ∗ y ∈ H.

3. ∀x ∈ H, x−1 ∈ H.

Exemple 2.2.

1. (Z, +) est un sous-groupe de (R, +).

2. Si E est un espace vectoriel alors GL(E) est un sous-groupe de S(E).

Exercice 2. Montrer que H est un sous-groupe de G si et seulement si H ̸= ∅ et ∀x, y ∈
H, x ∗ y−1 ∈ H.

Exercice 3. Montrer que les sous-groupes de Z sont les nZ, avec n ∈ Z.

Proposition 2.3. Soit G un groupe et {Hi | i ∈ I} un ensemble de sous-groupes de G. Alors⋂
i∈I Hi est un sous-groupe de G.

Définition 2.4. Soit G un groupe et S ⊂ G une partie de G. Le sous-groupe engendré par
S est

⟨S⟩ =
⋂

H sous-groupe de G
S⊂H

H.

C’est le plus petit (au sens de l’inclusion) sous-groupe de G contenant S.
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Exercice 4. Montrer que

⟨S⟩ = {sε1
1 . . . sεn

n | n ∈ N, s1, . . . , sn ∈ S, ε1, . . . , εn ∈ {−1, 1}}.

Définition 2.5. Un groupe G engendré par un élément est appelé monogène. Si de plus il est
fini, on dit que G est cyclique. Plus généralement si G est engendré par une partie finie on
dit qu’il est de type fini.

Définition 2.6. Soit G un groupe et g ∈ G. S’il existe n ∈ N∗ tel que gn = e on dit que g est
d’ordre fini. Le plus petit entier n ∈ N∗ tel que gn = e est appelé l’ordre de g.

Exercice 5. Montrer que si g ∈ G est d’ordre fini alors son ordre est égal au cardinal de ⟨g⟩.

3 Morphismes de groupes
Définition 3.1. Soit (G, △) et (H,□) des groupes. Un morphisme de groupes est une
application f : G → H telle que

∀x, y ∈ G, f(x△y) = f(x)□f(y).

Un endomorphisme de G est un morphisme de groupes de G dans G, un isomorphisme
est un morphisme de groupes bijectif et un automorphisme est un endomorphisme bijectif.

Proposition 3.2. Soit G, H des groupes et f : G → H un isomorphisme. Alors f−1 : H → G
est un isomorphisme.

Remarque 3.3. Quand deux groupes G et H sont isomorphes, on note G ≃ H, et on fait
« comme s’ils étaient les mêmes », c’est-à-dire que toutes les propriétés exprimables en termes
de théorie des groupes (abélien, centre trivial, résoluble, etc.) de l’un sont vraies pour l’autre.

Exercice 6. Montrer qu’un groupe cyclique est isomorphe à (Z/nZ, +) pour un unique entier
n. Montrer qu’un groupe monogène non cyclique est isomorphe à (Z, +).

Définition 3.4. Soit f : G → H un morphisme de groupes. Le noyau de f est

ker f = {g ∈ G | f(g) = eH}.

L’image de f est
im f = {h ∈ H | ∃g ∈ G, f(g) = h}.

Proposition 3.5. Soit f : G → H un morphisme de groupes. Alors ker f est un sous-groupe
de G et im f est un sous-groupe de H. De plus, f est injectif si et seulement si ker f = {eG} et
f est surjectif si et seulement si im f = H.

Démonstration. On a f(g) = f(g′) ⇔ f(gg′−1) = eH .
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4 Quotient par un sous-groupe
Dans toute cette section, G est un groupe et H un sous-groupe de G.

Définition 4.1. Les classes à gauche modulo H sont les gH = {gh | h ∈ H} ⊂ G avec
g ∈ G. L’ensemble-quotient G/H est {gH | g ∈ G}. Quand il est fini, on appelle indice de
H dans G, noté [G : H], le cardinal de G/H.

!△ Il n’y a pas de structure de groupe naturelle sur G/H en général.

Exercice 7. Déterminer une bijection entre les classes à gauche et les classes à droite modulo
H. En particulier, l’indice [G : H] ne dépend pas de si on considère les classes à gauche ou à
droite.

Proposition 4.2. Les classes à gauche modulo H forment une partition de G.

Remarque 4.3. En particulier, on dispose d’une relation d’équivalence sur G correspondant
à la partition selon les classes à gauche modulo H, donnée par

x ∼ y ⇔ ∃g ∈ G, x, y ∈ gH,

ou de manière équivalente
x ∼ y ⇔ ∃h ∈ H, y = xh,

ou encore
x ∼ y ⇔ x−1y ∈ H.

Corollaire 4.4 (Théorème de Lagrange). Si G est fini alors |G| = |H|[G : H]. En particulier,
|H| et [G : H] divisent |G| et l’ordre d’un élément de G divise |G|.

Démonstration. On utilise la partition selon les classes à gauche et le fait que |gH| = |H|.

Corollaire 4.5. Soit p un nombre premier. Si G est fini d’ordre p, alors G ≃ Z/pZ est cyclique.

Exercice 8. Soit n ∈ N∗ et k ∈ Z. Déterminer l’ordre de k ∈ Z/nZ.

Exercice 9. Montrer le petit théorème de Fermat à l’aide du théorème de Lagrange.

Proposition 4.6. Les propriétés suivantes sont équivalentes :

1. Pour tout g ∈ G, gHg−1 = H.

2. Pour tout g ∈ G, gH = Hg (i.e. les classes à gauche sont les classes à droite).

3. Pour tout g1, g2 ∈ G, g1Hg2H = g1g2H.

Définition 4.7. Si l’une des conditions ci-dessus est vérifiée, on dit que H est distingué dans
G, et on note H ◁ G.

Exercice 10. Montrer que si H est d’indice 2 dans G alors H ◁ G.

Exercice 11. Montrer qu’il suffit de montrer que ∀g ∈ G, gHg−1 ⊂ H pour obtenir que H ◁ G.

Proposition 4.8. L’image réciproque d’un sous-groupe distingué par un morphisme de groupes
est distingué.
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Remarque 4.9.

1. En particulier, le noyau d’un morphisme de groupes est toujours distingué.
!△ L’image d’un morphisme de groupes n’est en général pas distinguée dans le groupe

d’arrivée.

2. Si K ◁ H et H ◁ G on n’a pas forcément K ◁ G. Contre-exemple à venir dans la feuille
suivante.

3. Si G est abélien, tous ses sous-groupes sont distingués.
!△ La réciproque est fausse, voir les exercices.

Définition 4.10. Un groupe G est dit simple lorsqu’il est non trivial et que ses seuls sous-
groupes distingués sont {e} et G.

Exercice 12. Soit p un nombre premier. Montrer que Z/pZ est simple. Réciproquement, mon-
trer que si un groupe abélien fini est simple alors il est isomorphe à Z/pZ pour un certain
nombre premier p.

Remarque 4.11. Les groupes finis simples forment les « briques de base » qui permettent de
comprendre la structure des groupes finis, nous expliquerons pourquoi dans les exercices. Leur
liste complète est connue seulement depuis les années 80, résultats de décennies et de milliers
de pages de recherche.

Théorème 4.12. Si H est distingué dans G, il existe une unique loi de groupe sur G/H telle
que la projection canonique g 7→ gH de G dans G/H soit un morphisme de groupes.

Démonstration. On pose la loi (g1H) ∗ (g2H) = (g1g2)H, qui est bien définie car H ◁ G. On a
immédiatement que le neutre de cette loi est H, et l’inverse de gH est g−1H.

!△ Il n’y a aucune raison pour que G ≃ H × G/H en général, voir les exercices.

Corollaire 4.13. Soit H un sous-groupe de G. Alors H ◁G si et seulement s’il existe un groupe
G′ et un morphisme de groupes f : G → G′ tel que H = ker f .

Théorème 4.14 (Propriété universelle du quotient). Soit f : G → G′ un morphisme de
groupes. Pour qu’il existe un morphisme de groupes f̃ : G/H → G′ tel que f = f̃ ◦ πH , il faut et
il suffit que H ⊂ ker f . De plus, f̃ est unique. Autrement dit, le diagramme suivant commute :

G

G/H

G′
f

πH
∃!f̃

Démonstration. La condition est clairement nécessaire car si f = f̃ ◦ πH alors f est trivial sur
H. Réciproquement, si f est trivial sur H, posons, pour tout g ∈ G,

f̃(gH) = f(g).

f̃(gH) ne dépend pas du représentant g de gH car si gH = g′H alors il existe h ∈ H tel
que g = g′h et alors f(g) = f(g′)f(h) = f(g′). On vérifie immédiatement que f̃ est bien un
morphisme de groupes, d’où le résultat.
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Corollaire 4.15 (Premier théorème d’isomorphisme). Soit f : G → G′ un morphisme de
groupes. Alors

G/ ker f ≃ im f.

Démonstration. On vérifie que le f̃ ci-dessus a la même image que f . De plus, si f̃(g ker f) = eG′

c’est que g ∈ ker f et donc g ker f = ker f , donc f̃ est injectif.

Théorème 4.16 (Théorème chinois). Soit m, n ≥ 1 des entiers premiers entre eux. Alors

Z/mnZ ≃ Z/mZ × Z/nZ.

Démonstration. Considérons le morphisme de groupes Z → Z/mZ×Z/nZ défini par f(k) = (k
mod m, k mod n). Comme m et n sont premiers entre eux, il existe une relation de Bézout
mu + nv = 1 avec m, n ∈ Z. Alors f(um) = (0, 1) et f(vn) = (1, 0). Comme {(1, 0), (0, 1)}
engendre Z/mZ×Z/nZ, f est surjectif. De plus, le noyau de f est mnZ. En effet, il est clair que
mnZ ⊂ ker f , et si f(k) = (0, 0), c’est que m | k et n | k. En écrivant k = md, le lemme de Gauss
donne que n divise d, d’où mn | k. On conclut avec le premier théorème d’isomorphisme.

Remarque 4.17. On peut aussi directement montrer que k mod mn 7→ (k mod m, k mod n)
est un morphisme de groupes bien défini, injectif comme ci-dessus et conclure par égalité des
cardinaux des deux groupes.

5 Produits directs et semi-directs internes
Une question naturelle est la suivante : étant donné un groupe G engendré par deux sous-

groupes H et K, peut-on reconstruire la structure de groupe de G à partir de celles de H et
K ? La réponse dépend de comment H et K sont « agencés » dans G. On présente ici deux
situations abordables à l’agrégation.

Définition 5.1. Soit (G1, ∗1) et (G2, ∗2) des groupes. Leur produit direct (externe) est le
groupe d’ensemble sous-jacent G1 × G2 et de loi donnée par

(g1, g2) ∗ (h1, h2) = (g1 ∗1 h1, g2 ∗2 h2).

Remarque 5.2. On vérifie facilement que, si on note H1 = G1 × {eG2} et H2 = {eG1} × G2
alors H1 ≃ G1, H2 ≃ G2, H1, H2 ◁ G1 × G2, H1H2 = G1 × G2 et H1 = H2 = eG1×G2 .

Les conditions ci-dessus caractérisent en fait les produits directs.

Proposition 5.3. Soit G un groupe, H1 et H2 des sous-groupes de G. Supposons que

1. H1 ◁ G, H2 ◁ G.

2. G = H1H2 = {h1h2 | h1 ∈ H1, h2 ∈ H2}.

3. H1 ∩ H2 = {e}.

Alors G est isomorphe à H1 × H2 et on dit que G est produit direct interne de H1 et H2.

6



Démonstration. Il s’agit de vérifier que g1g2 7→ (g1, g2) est un isomorphisme de groupes bien
défini. Le point-clé est que les éléments de H1 et de H2 commutent entre eux car h1h2h

−1
1 h−1

2
est simultanément dans H1 et H2, donc trivial.

Considérons maintenant la situation suivante : on dispose d’un groupe G et de deux sous-
groupes H et K de G tels que G = HK. Peut-on retrouver la structure de groupe de G à l’aide
de cette information ?

Si g1 = h1k1 et g2 = h2k2 avec h1, h2 ∈ H et k1, k2 ∈ K, alors on a

g1g2 = h1k1h2k2
?= h3k3.

Il n’y a a priori aucune manière de retrouver h3 et k3. Cependant, si (par exemple) H ◁ G,
alors on peut écrire

h1k1h2k2 = h1(k1h1k
−1
1 )k1k2

ce qui permet de voir que h3 = h1(k1h1k
−1
1 ) ∈ H et k3 = k1k2 ∈ K conviennent.

L’unicité d’une telle écriture est équivalente à H ∩ K = {e} car h1k1 = h2k2 ⇔ h−1
2 h1 =

k2k
−1
1 .

Définition 5.4. On dit que G est produit semi-direct interne de H et K, et on note
G = H ⋊ K, lorsque :

1. G = HK.

2. H ∩ K = {e}.

3. H ◁ G.
On a vu plus haut que lorsque de plus K ◁ G alors G ≃ H × K et donc les notions de

produits direct interne et externe coïncident. Dans l’Exercice 32 on fait le lien entre le produit
semi-direct interne et la structure de produit semi-direct externe H ⋊φ K, qui dépend d’un
morphisme de groupes φ : K → Aut(H).

6 Groupes et sous-groupes remarquables
Dans toute cette section, G est un groupe.
Définition 6.1. Le centre de G est

Z(G) = {g ∈ G | ∀h ∈ G, gh = hg}.

Proposition 6.2. On a Z(G) ◁ G. Le groupe G est abélien si et seulement si Z(G) = G.
Définition 6.3. Si x, y ∈ G, leur commutateur est

[x, y] = xyx−1y−1.

Le sous-groupe dérivé de G est
D(G) = ⟨{[x, y] | x, y ∈ G}⟩.

!△ D(G) n’est en général pas égal à l’ensemble {[x, y] | x, y ∈ G} des commutateurs de G car
ce dernier n’est pas toujours un sous-groupe de G.
Proposition 6.4. On a D(G) ◁ G. Le groupe G est abélien si et seulement si D(G) = {e}.
Proposition 6.5. L’ensemble des automorphismes de groupes de G, noté Aut(G), est un groupe
pour la composition.
Exercice 13. Déterminer Aut(Z/nZ) pour n ∈ N∗.
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7 Exercices
Exercice 14. Soit (G, ∗) un groupe. Le groupe opposé est (G, •) où la loi • est définie par

x • y = y ∗ x.

Montrer que (G, •) est un groupe isomorphe à (G, ∗).

Exercice 15. Soit G un groupe tel que ∀g ∈ G, g2 = e. Montrer que G est abélien. Montrer la
même conclusion en supposant que g 7→ g−1 est un endomorphisme de G.

Exercice 16. Soit G un groupe et H un sous-groupe strict de G. Montrer que ⟨G \ H⟩ = G.

Exercice 17. Soit G un groupe, x, y ∈ G qui commutent entre eux et d’ordres respectifs m et
n premiers entre eux. Montrer que xy est d’ordre mn.

Exercice 18. Soit G un groupe abélien fini. Exprimer∏
g∈G

g.

En déduire le théorème de Wilson : Si p est un nombre premier alors

(p − 1)! ≡ −1 mod p.

(On pourra admettre que Z/pZ \ {0} est un groupe pour la multiplication.)

Exercice 19. Déterminer les sous-groupes de Z/nZ pour n ∈ N∗.

Exercice 20. Soit m, n ∈ N∗. Déterminer tous les morphismes de groupes de Z/nZ dans
Z/mZ.

Exercice 21. Déterminer Aut(Z).

Exercice 22. Soit G un sous-groupe de (R, +). Montrer que G est monogène ou dense dans
R. Indication : Considérer inf G ∩ R+∗.

Exercice 23. Justifier si les paires de groupes suivantes sont isomorphes :

1. Z/nZ et Z/mZ avec m ̸= n.

2. ((Z/2Z)2, +) et (Z/4Z, +).

3. (Z/6Z × Z/35Z, +) et (Z/10Z × Z/21Z, +).

4. (R, +) et (R+∗, ×).

5. (Q, +) et (Q+∗, ×).

6. (Q, +) et (R, +).

7. (Z[X], +) et (Q+∗, ×).

8. (R, +) et (C, +). (Bonus)

Exercice 24. 1. Montrer que si G et G′ sont des groupes, f : G → G′ est un morphisme de
groupes et H ◁ G alors f(H) n’est pas forcément distingué dans G′.
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2. Montrer que si f est surjectif alors f(H) ◁ G′.
Remarque. En général, f(H) est distingué dans f(G).

Exercice 25. 1. Soit G un groupe, H et K des sous-groupes de G avec H ◁ G.

(a) Montrer que le sous-groupe engendré par K et H est égal à KH.
(b) Montrer que K ∩ H ◁ K et

K/(K ∩ H) ≃ KH/H. (Second théorème d’isomorphisme)

2. Soit G un groupe, H et K des sous-groupes distingués de G avec K ⊂ H. Montrer que

(G/K)/(H/K) ≃ G/H. (Troisième théorème d’isomorphisme)

Exercice 26. Soit G un groupe. Montrer que G/D(G) est le plus grand quotient abélien de G,
au sens où si H ◁ G alors G/H est abélien si et seulement si D(G) ⊂ H, et dans ce cas on a
un morphisme surjectif

G/D(G) ↠ G/H.

Exercice 27. Notons l’ensemble H8 = {1, −1, i, −i, j, −j, k, −k} à 8 éléments muni de la loi
vérifiant :

• 1 est neutre.

• i2 = j2 = k2 = −1 commute avec tous les éléments de H8.

• ij = −ji = k, jk = −kj = i, ki = −ik = j.

On admettra (c’est l’associativité qui est fatigante) qu’il s’agit d’une loi de groupe sur H8.

1. Déterminer Z(H8) et D(H8).

2. Montrer que tous les sous-groupes de H8 sont distingués. H8 est-il abélien ?

3. Montrer que H8 ̸≃ D(H8) × H8/D(H8).

4. Montrer que H8 ne peut s’écrire comme un produit direct de groupes simples.

Exercice 28. Soit G un groupe abélien et p un nombre premier tel que pour tout g ∈ G, gp = e.
Montrer que l’on peut munir G d’une structure de Fp-espace vectoriel. Si G est fini, quel peut
être la forme de son cardinal ?

Exercice 29. Soit G un groupe.

1. Pour tout g ∈ G, on note Int(g) : x 7→ gxg−1. Montrer que Int(g) ∈ Aut(G).

2. On note Int(G) = {Int(g) | g ∈ G}. Montrer que Int(G) est un sous-groupe distingué
dans Aut(G).

3. Montrer que Int(G) ≃ G/Z(G).

4. On appelle sous-groupe caractéristique de G tout sous-groupe H tel que ∀φ ∈ Aut(G), φ(H) =
H. Montrer qu’un sous-groupe caractéristique est distingué.

5. Montrer que Z(G) et D(G) sont caractéristiques dans G.
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6. Donner un exemple de sous-groupe distingué qui n’est pas caractéristique.

Exercice 30. Montrer que Q n’est pas de type fini, c’est-à-dire qu’il n’existe pas de partie finie
S ⊂ Q telle que Q = ⟨S⟩.

Exercice 31. Soit G un groupe et H ◁ G. Montrer que les sous-groupes de G/H correspondent
bijectivement aux sous-groupes K de G tels que H ⊂ K, et de même pour les sous-groupes
distingués. En déduire que tout groupe fini G admet une décomposition de Jordan-Hölder :
une suite de sous-groupes {e} = Gn ⊂ Gn−1 ⊂ · · · ⊂ G1 ⊂ G0 = G avec Gi+1 ◁ Gi et Gi/Gi+1
simple.
Remarque. C’est cette décomposition de Jordan-Hölder qui justifie l’importance de la connais-
sance des groupes finis simples. On peut « dévisser » n’importe quel groupe fini par quotients
successifs qui sont simples.

Exercice 32. 1. Soit H et K des groupes, et supposons qu’il existe un morphisme de groupes
φ : K → Aut(H). Montrer que la loi donnée par

(h1, k1) ∗ (h2, k2) = (h1φ(k1)(h2), k1k2)

sur l’ensemble H × K est une loi de groupe, et identifier son élément neutre.
On note H ⋊φ K ce groupe, appelé produit semi-direct de H par K (relativement à
φ).

2. Montrer que H ⋊φ K contient un sous-groupe distingué isomorphe à H et un sous-groupe
isomorphe à K, d’intersection réduite à (eH , eK).

3. Soit P un groupe possédant des sous-groupes H et K vérifiant :

(a) H ◁ P .
(b) P = HK.
(c) H ∩ K = {eP }.

Montrer qu’il existe φ : K → Aut(H) tel que P ≃ H ⋊φ K. Indication : Identifier φ dans
le cadre de la question précédente.

4. Identifier tous les produits semi-directs de la forme

Z/3Z ⋊φ Z/2Z.

5. Montrer que si G est un groupe et H ◁ G alors G n’est pas forcément isomorphe à un
produit semi-direct G/H ⋊φ H ou H ⋊φ G/H. Indication : Penser à H8.

6. Supposons que H ⋊φ K soit un produit semi-direct. On identifie abusivement H à H ×
{eK} ⊂ H ⋊φ K et K à {eH} × K ⊂ H ⋊φ K. Montrer que (H ⋊φ K)/H ≃ K et qu’il
existe une section s : K → H ⋊φ K, c’est-à-dire un morphisme de groupes tel que pour
tout k ∈ K, πH(s(k)) = k, où πH est la projection dans le quotient par H.

7. Réciproquement, soit G un groupe, H ◁G et K = G/H. Supposons qu’il existe une section
s : K → G. Montrer que G est isomorphe à un produit semi-direct de H par K.

Exercice 33. Soit G un groupe. On dit que G est résoluble lorsque la suite (Dn(G))n∈N,
définie par D0(G) et Dn+1(G) = D(Dn(G)) pour tout n ∈ N, stationne à {e}.
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1. Montrer qu’un groupe abélien est résoluble. Montrer que H8 est résoluble. Montrer qu’un
groupe simple non abélien n’est pas résoluble (c’est par exemple le cas des groupes alternés
An pour n ≥ 5).

2. Montrer que G est résoluble si et seulement s’il existe une famille finie de sous-groupes
(Gi)0≤i≤n telle que G0 = G, Gn = {e} et pour 0 ≤ i < n, Gi+1 ◁ Gi et Gi/Gi+1 est abélien.

3. Soit H un sous-groupe distingué de G. Montrer que G est résoluble si et seulement si H
et G/H le sont.

Exercice 34. Soit F un groupe. On dit que F est un groupe libre de rang n ∈ N∗ lorsqu’il
existe a1, . . . , an ∈ F vérifiant la propriété universelle suivante : pour tout groupe G et tout
g1, . . . , gn ∈ G, il existe un unique morphisme de groupes f : F → G tel que pour tout i ∈
{1, . . . , n}, f(ai) = gi. Dans cet exercice, un groupe sera dit libre s’il est libre de rang n pour
un certain entier n ≥ 1.

1. Montrer que Z est un groupe libre mais que Z2 ne l’est pas.

2. Un groupe fini peut-il être libre ?

3. Montrer que si F est un groupe libre de rang n et a1, . . . , an ∈ F sont des éléments
vérifiant la propriété universelle ci-dessus, alors {a1, . . . , an} engendre F .

4. Montrer que si F est un groupe libre de rang n et un groupe libre de rang m alors n = m.
On pourra considérer les morphismes de groupes F → Z/2Z.

5. En admettant l’existence, montrer que pour tout n ∈ N∗, il n’existe qu’un seul groupe libre
de rang n à isomorphisme près.

6. Construire un groupe libre de rang 2. Indication : Considérer quatre symboles a, b, a−1, b−1

et l’ensemble M des mots en a, b, a−1, b−1. C’est un monoïde pour la concaténation. Quo-
tienter ce monoïde par le monoïde engendré par aa−1, a−1a, bb−1 et b−1b.

Exercice 35. Soit G un groupe admettant une partie génératrice finie S. On définit le graphe
de Cayley G associé comme étant le graphe ayant pour sommets les éléments de G, et il existe
une arête de g à g′ si et seulement s’il existe s ∈ S tel que g′ = gs.

1. Montrer qu’on peut supposer que S est symétrique et fini, c’est-à-dire que pour tout s ∈
S, s−1 ∈ S. On le supposera dans la suite.

2. Dessiner les graphes de Cayley de (Z/nZ, {1, −1}), (Z2, {(1, 0), (0, 1), (−1, 0), (0, −1)}) et
(F2, {a, b, a−1, b−1}) (où F2 est le groupe libre à deux générateurs a et b).

3. Montrer que G est connexe et régulier (c’est-à-dire que tout sommet est relié au même
nombre d’arêtes).

4. Si g, g′ ∈ G, on définit dS(g, g′) comme étant la longueur du plus court chemin reliant
g à g′ dans G. Montrer que dS est une distance sur G, invariante à gauche, au sens où
d(hg, hg′) = d(g, g′) pour tout g, g′, h ∈ G.
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