ENS Paris-Saclay 2025-2026 Préparation a ’agrégation
A. Bailleul Cours-TD d’anneaux et corps

Arithmétique

1 Autour de ’anneau Z/nZ

Rappelons le résultat suivant.
Proposition 1.1. Soit n > 2 et k € Z. Les propositions suivantes sont équivalentes :
1. k est inversible dans Z/nZ.
2. k est un générateur du groupe (Z/nZ,+).
3. k est premier avec n.

Définition 1.2. Soit n > 1. L’indicatrice d’Euler de n, notée p(n), est 1 sin =1 et le
nombre d’entiers k € {1,...,n — 1} premiers avec n sinon.

En vertu du théoréme chinois, on a la propriété suivante.

Proposition 1.3. Pour tout m,n > 1 premiers entre euzx, o(mn) = p(m)p(n) (on dit que ¢
est multiplicative).

Corollaire 1.4. Soit n > 2. Alors
1
eny=n ] (1--].
pln

p

p premier

Démonstration. Si p est un nombre premier et o > 1 alors les entiers entre 0 et p® — 1 premiers

avec p® sont ceux qui ne sont pas divisibles par p car p est premier. Il y en a donc p® — p*~! =
p* (1 — %) La formule générale s’en déduit par multiplicativité de . O

Proposition 1.5 (Théoréme d’Euler). Soit n > 2 et a € Z/nZ*. Alors a¥*™ = 1.

Théoréme 1.6. Soit n > 2. Le groupe Z/nZ* est cyclique si et seulement sin est de la forme,
2,4, p% ou 2p* avec p premier impair et o > 1.

Exercice 1. Montrer que la condition est nécessaire.

Remarque 1.7. Le caractere suffisant se montre en construisant un élément d’ordre p — 1
dans Z/p*Z* a partir d’un élément d’ordre p — 1 dans F,, et un élément d’ordre p*~! (la classe
de 1 + p convient). Leur produit est alors d’ordre p®~*(p — 1) puisqu’ils commutent et leurs
ordres sont premiers entre eux. La méme méthode permet de montrer que Z/2%7Z est engendré
par —1 et 5 dés que a > 3. Ainsi, Z/2°7* ~ 7/27 x Z./2°7*Z pour « > 3.



2 Nombres premiers

Théoréme 2.1 (Euclide). [l existe une infinité de nombres premiers.

Démonstration. Une des plus vieilles démonstrations de l'histoire (c’est un peu 1’équivalent

des peintures rupestres pour les maths) : Soit py, ..., p, des nombres premiers distincts. Alors
Pentier 1 + py...p, est supérieur ou égal a 2 donc admet un facteur premier p, distinct de
P1,-..,Pr, sans quoi p diviserait 1. O

Remarque 2.2. Ce n’est pas un raisonnement par I’absurde! On montre que toute liste finie
d’entiers est incompléte, on n’a pas besoin de supposer que la liste complete I’est pour conclure
a une absurdité.

On peut quantifier le caractere infini des nombres premiers avec le théoreme culturel suivant.

Théoréme 2.3 (des nombres premiers (malheureusement admis)). Pour x > 2, notons 7 (x)
le nombre de nombres premiers inférieurs ou égauz a x. Alors
x

() —

~ .
r—r—+00 ln €x

Il faut savoir dire que la démonstration utilise ’analyse complexe et ’étude de la fonction
¢ de Riemann.

Un autre théoreme culturel & connaitre (et dont la version faible avec a = 1 est abordable
a l'agrégation) est le suivant.

Théoréme 2.4 (de la progression arithmétique de Dirichlet (admis)). Soit a,q € Z premiers
entre eux. Alors il existe une infinité de nombres premiers p = amod q.

Exercice 2 (Nombres premiers de Fermat). Montrer que si 2"+ 1 est un nombre premier alors
n est une puissance de 2.

Exercice 3 (Nombres premiers de Mersenne). Montrer que si 2" — 1 est un nombre premier
alors n est un nombre premier.

Définition 2.5. Soit p un nombre premier. Le symbole de Legendre modulo p est la fonction

—1 sin n’est pas un carré modulo p,

1 sin est un carré non nul modulo p,
() s
0 si p divise n.

p

Proposition 2.6. Le symbole de Legendre est multiplicatif : pour tout a,b € Z, ( ) (9) = (“—b)

a
p p p
Démonstration. Cela vient du fait que I’ensemble des carrés est un sous-groupe d’indice 2 de
Fx. O
p

Théoréme 2.7 (Loi de réciprocité quadratique). Soit p et ¢ des nombres premiers impairs

distincts. Alors
p\ (4q p-lg-t
- — |l =(=1)72 2.
<q> <p> =)

Remarque 2.8. Autrement dit, la loi de réciprocité quadratique affirme que (%) = (%), sauf
dans le cas ou p et g sont tous les deux congrus a 3 modulo 4, auquel cas les deux symboles

sont opposeés.



On propose une démonstration dans les exercices inspirée du théoreme de Wilson. Il y en
a beaucoup d’autres abordables a 'agrégation (sommes de Gauss, comptage de points dans [,
et la classification des formes quadratiques, etc.) et on en connait a ce jour plus de 300!

Exercice 4. FEst-ce que T13 est un carré modulo 1009 ¢

Exercice 5. Soit p un nombre premier impair. Montrer que
2\ _f 1sip==+lmod8
p) |—1sip=+3mods.
(Indication : Si ¢ est une racine primitive 8-iéme de l'unité dans F,, alors (( +(71)? =2.)

Méthode : Pour tester si un petit nombre n est premier, on vérifie s’il est divisible par les
nombres premiers inférieurs & y/n. Cette méthode est hautement inefficace quand n devient
grand, et on préfére des tests qui se basent sur des propriétés impliquées par le fait que Z/nZ
doit étre un corps (tests de Fermat, Miller-Rabin, Solovay-Strassen, etc.).

Exercice 6. Soit n = 561. Montrer que pour tout a € 7 premier avec n, a" ' = 1modn. En
déduire qu’on ne peut pas assurer la primalité d’un entier a 'aide du petit théoréme de Fermat.

Définition 2.9. Un entier n non premier tel que pour tout a premier avec n, a" ' = 1modn
est un nombre de Carmichael.

Théoréme 2.10 (Critere de Korselt). Un entier n > 2 est un nombre de Carmichael si et
seulement st n est sans facteur carré, et pour tout diviseur premier p de n, p — 1 divise n — 1.

3 Corps de nombres

Définition 3.1. Un corps de nombres est une extension finie de Q.
Exemple 3.2.

1. Les corps quadratiques réels Q(\/E) avec d > 2 sans facteur carré.

2. Les corps quadratiques imaginaires Q(iv/d) avec d € N* sans facteur carré.

3. Les corps cyclotomiques Q((,), avec ¢, une racine primitive n-iéme de I'unité.

4. Le corps de décomposition Q(+/2,(3) de X3 — 2 sur Q.
5. Q n’est pas un corps de nombres, mais les contient tous.

3.1 Corps cyclotomiques

Définition 3.3. Soit n > 1. Le n-ieme polynéme cyclotomique est

¢, = 11 (X =)

. Lo .\ Y
¢ racine primitive n—iéme de l’unité

Exercice 7. Soit p un nombre premier. Déterminer ®, et montrer que ®,, est irréductible dans
Q[X] en appliquant le critére d’Eisenstein au polynome ®,(X + 1).



Proposition 3.4. Pour tout n € N*,

X" —1=]]®a
dln

Théoréme 3.5. Soit n > 1. Alors ®,, € Z[X], est de degré p(n) et est irréductible dans Q[X].

Démonstration. Le degré est clair. Au vu de I'égalité X" — 1 = [y, P, le fait que ®,, € Z[X]
se montre par récurrence sur n : le cas n = 1 est clair, et si le résultat est montré pour tous les

d < n, on pose la division euclidienne de X™ — 1 par [] 4,, 4 dans Z[X], ce qui est possible car
d#n
ce dernier est unitaire.

L’irréductibilité nécessite plus de travail. Soit ( une racine primitive n-ieme de l'unité et
P son polyndéme minimal sur Q. Alors P € Z[X] car il divise (dans Q[X]) I'un des facteurs
irréductibles dans Z[X] de ®,,, et lui est donc égal car ils sont unitaires (lemme de Gauss).

Soit p un nombre premier ne divisant pas n. Alors (? est encore une racine primitive n-iéme
de I'unité et on note @ son polynéme minimal sur Q. Comme avant, il est dans Z[X] et on va
montrer que P = (). Si ce n’était pas le cas, on aurait PQ | ®,, dans Z[X] puisque les deux
sont irréductibles et Z[X| est factoriel. Mais on a aussi P | Q(X?) dans Q[X], puis dans Z[X]
comme avant. Or, Q(X?) = Q(X)? modulo p, et donc un facteur irréductible de P est également
facteur irréductible de @, et donc un facteur multiple de ®,,. Or un tel facteur n’existe pas car
X" — 1 est sans facteur carré puisque premier avec sa dérivée nX"—1 #£ 0. On a donc P = Q et
notamment P(¢?) = 0.

Pour finir, si m € {1,...,n — 1} est premier avec n, on écrit m = p;...p, avec les p; des
nombres premiers (pas forcément distincts) ne divisant pas n, et 'argument précédent montre
par récurrence sur r que (™ est racine de P. Finalement, P divise ®,, et a au moins autant de
racines, ils sont donc associés (méme égaux puisqu’ils sont unitaires) et ®,, est bien irréductible

dans Q[X]. O

Corollaire 3.6. Pour tout n > 1, ®,, est le polynome minimal de (,. De plus, [Q((,) : Q] =
p(n).

3.2 Corps quadratiques
Proposition 3.7. L’anneau Z[i] C Q(4) est euclidien pour le stathme N : a + ib — a® + b2

Démonstration. Puisque N est le carré du module, il est multiplicatif, et il est clair qu’il est
a valeurs dans N. Soit a,b € Z[i] avec b # 0. Pour trouver q,r € Z[i] tels que a = bg + r

et N(r) < N(b), il suffit de trouver ¢ € Z[i| de sorte que N (% - q) < 1. Or, si § = u+ v,

avec u,v € Q, on prend ¢1,q2 € Z avec |u — q1f,|v — ¢2| < %, et alors N(% — (¢ +z’q2)) =
(u—q)?+w—g)P <<l O

Proposition 3.8. L’anncau Z[j] C Q(j) est euclidien pour le stathme N : a+ jb + a*>—ab+1?.

Démonstration. Puisque N est le carré du module, il est multiplicatif, et il est clair qu’il est
a valeurs dans N. Soit a,b € Z[j] avec b # 0. Pour trouver ¢,r € Z[j] tels que a = bg + r

et N(r) < N(b), il suffit de trouver ¢ € Z[j] de sorte que N (% — q) < 1. Or, si § = u+ jv,

avec u,v € Q, on prend ¢i,¢q2 € Z avec |u — q1,[v — g2| < %, et alors N(% — (¢ +jq2)) =
(u—Q1)2_(U—Q1)(U—Q2)+(U—Q2)2S%+i<1. N

Exercice 8. Montrer que Z[\/2] est euclidien pour le stathme N : a4 b\/2 +— |a® — 21?|.
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Remarque 3.9. Les anneaux Z[(,], Z[iv/d] (pour d = 1 mod 4) et Z [#} (pour d = 3

mod 4 1) sont euclidiens pour de petites valeurs de n et de d, mais ce n’est pas une généralité :
il n’y a en fait qu'un nombre fini de valeurs de d et de n pour lesquelles ces anneaux peuvent
étre principaux. Nous allons voir ci-dessous que cette propriété peut étre tres précieuse pour la
résolution de certaines équations. En ce qui concerne les anneaux de la forme Z[v/d] et Z [1+2\/3} :
la situation est beaucoup plus compliquée : on ne sait pas a ce jour s’il en existe une infinité

qui sont principaux!

4 Equations diophantiennes

Définition 4.1. Une équation diophantienne est une équation polynomiale da coefficients
entiers dont on cherche les solutions entiéres (ou rationnelles).

Exemple 4.2.
1. L’équation de Pell-Fermat 22 — dy? = 1 avec d € N.
2. L’équation de Fermat z" + y" = 2™ avec n € N*.
3. Les équations de Mordell y? = 2 + k avec k € Z.

Exercice 9. Soit a,b,c € Z non nuls. Déterminer quand l’équation diophantienne ax + by = c
admet des solutions dans Z, et les déterminer.

Exercice 10. Résoudre I’équation diophantienne 103z + 78 = y>.

Théoréme 4.3 (Triplets pythagoriciens). Soit x,y, z € Z premiers entre euz dans leur ensemble
avec x impair. On a 2 4+ y? = 2% si et seulement s’il existe des entiers u,v € Z premiers entre
eux et de parités différentes tels que x = u? —v%, y = 2uv et z = u® + v2.

Démonstration. Un calcul montre que la condition est suffisante. Réciproquement, si 22+1? = 22
alors 2 = (z — y)(z + y). Ainsi, tout facteur premier p de z divise z — y ou z + y, mais pas les
deux. Dans le cas contraire, p diviserait (z —y) + (2 +y) =2z et (z —y) — (2 +y) = -2y et
donc y et z puisque p # 2, ce qui est absurde car x,y et z sont premiers entre eux dans leur
ensemble. Ensuite, p?*»(®) divise z —y ou 2+, mais pas les deux. Réciproquement, tout facteur
premier de z — y et de z + y est un facteur premier de x avec valuation paire. On en déduit
que z —y =a? et z+y = b* avec © = ab (a est le produit des puissances de nombres premiers
divisant = et z — y, de méme pour b avec z + y). Pour obtenir la décomposition voulue, on pose

__ a+b __ab
u= 4" etv =94 O

Remarque 4.4. Ce résultat permet de trouver tous les triplets pythagoriciens en factorisant
par le carré du PGCD de (z,y, z) et quitte a échanger les roles de x et y pour que x soit impair
(ils ne peuvent pas étre tous les deux pairs, sinon z le serait aussi).

Exercice 11. 1. Montrer que, pour trouver les triplets pythagoriciens, il suffit de trouver
les points rationnels du cercle unité dans le plan.

2. Déterminer ces points rationnels, en utilisant la paramétrisation suivante : considérer le
point d’intersection entre le cercle unité et la droite passant par (—1,0) et de pente un
rationnel t € Q.

1. Cette condition garantit que Z {H;\/ﬂ est Panneau des entiers de Q(iv/d), voir 'Exercice 23.
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Corollaire 4.5. L’équation de Fermat z* + y* = 2* n'admet pas de solution non triviale,
c’est-a-dire avec xyz # 0.

Démonstration. On va méme montrer qu’il n’y a pas de solution non triviale a ’équation
x* 4+ y* = 2%. Supposons par 'absurde 'existence d’une telle solution, avec |z| minimal. Alors,
quitte a factoriser et échanger x et y, on peut appliquer le critere des triplets pythagoriciens :
il existe u,v € Z premiers entre eux et de parités différentes tels que 2% = u? — v?,y? = 2uv
et z = u?® + v Alors 22 + v? = 2 constitue un triplet pythagoricien avec = impair et z,u,v
premiers entre eux (car u et v le sont), et donc il existe & nouveau a,b € Z premiers entre eux
et de parités différentes tels que z = a? — b?, v = 2ab et u = a® + b%. Les entiers u et v sont
premiers entre eux, donc 'un au plus est pair, par exemple v, et alors u et 2v sont premiers
entre eux. Puisque 2uv = 92, u et 2v sont des carrés. Comme 2v = 4ab est un carré, ab aussi
et donc a et b sont des carrés. Si on note u = k?,a = m? et b = n? alors on arrive finalement

m* +n* = k? avec |k| = |u|'/? < |2|"/* < |z|. La minimalité de |z| donne une contradiction. [

Remarque 4.6. On a utilisé la méthode de « descente infinie » de Fermat, qui est équivalente
au principe de récurrence, ou encore au caractere bien ordonné de N. Cette méme méthode
permet, avec (beaucoup) plus de travail, que I’équation de Fermat n’a pas de solution non
triviales pour n = 3,5 ou 7, en utilisant I'arithmétique des anneaux Z[j], Z[p] et Z[i\/7].

Proposition 4.7. L’équation diophantienne y*> = x> —1 a pour unique solution (1,0) dans Z>.

Démonstration. 11 est clair que (1,0) est solution. Réciproquement, supposons que (z,y) est
solution dans Z?. On a alors 2° = y> + 1 = (y —4)(y + i) dans Z[i]. Or y + i et y — i sont
premiers entre eux dans Z[i]. En effet, dans le cas contraire, il existerait un élément irréductible
7 divisant les deux, donc divisant notamment 2i, qui est irréductible dans Z[i]. Ainsi, 7 est
associé a 2i, mais il ne peut alors pas diviser y + ¢ (écrivez-le!). Comme Z[i] est factoriel (et
comme ses inversibles sont des cubes), on en déduit que y + i et y — ¢ sont des cubes dans Z[i].
Si par exemple y + i = (a + ib)> = (a® — 3ab?) + i(3a®b — b?) alors 3a®b — b® = (3a® — b*)b =1
et donc b = £1, puis 3a? = £1 + 1. La seule possibilité est que a = 0 et b = —1. Finalement,
y = a® — 3ab®> = 0 et donc 2% = 1, ce qui implique que = = 1. O

Proposition 4.8. L ’équation diophantienne y* = x3+1 a pour seules solutions (—1,0), (0, —1),
(0,1),(2,3),(2,—-3) dans Z*.

Démonstration. On vérifie immédiatement que les couples annoncés sont bien solutions.

Réciproquement, si (x,y) est une solution dans Z?, alors y? = (z + 1)(z + j)(z + j?) dans
Z[j]. Si I'un des deux derniers facteurs est premier avec le reste, on procede comme dans
la résolution précédente : Z[j] étant factoriel, ce facteur est associé a un carré de Z[j]. Les
inversibles de Z[j] étant +1, 45, et £52, et j lui-méme étant un carré (5 = (52)?) on peut donc
écrire © + j = +(a + jb)? et x + j% = £(a + j5?b)? (puisque x + j et x + 52 sont conjugués).
En prenant la différence on obtient +b(2a — b) = 1 ce qui meéne aux couples (—1,0), (0, —1) et
(0,1).

Sinon, x + j n’est pas premier avec (z + 1)(x + j2) donc avec z + 1 ou = + j% et de méme
x + j? n'est pas premier avec x + 1 ou = + j. Dans tous les cas un facteur commun doit
diviser la différence 1 — 5,1 — j2 ou j — j2 qui est de norme 3 et est donc irréductible. Ainsi,
un PGCD de z + 1,2 + j et o + j2 est I'élément irréductible A = 1 — j (associé a chacun
des trois éléments ci-dessus). Comme précédemment, on a donc = + j = (1 — j)(a + jb)? et
r+ 7% = +(1 — j?)(a + j%b)% En ajoutant les deux, on obtient 22 — 1 = +3(a® — b?). Or, z + 1
étant réel, si A divise x + 1 alors I’élément irréductible distinct 1 — 52 divise aussi  + 1, et donc
ax+1=+£3a% Comme y? > 0 on doit avoir z > —1 et donc z+1 = 3a®. On a donc finalement
6a? — 3 = +3(a?® — b?), ce qui mene aux couples (2, —3) et (2,3). O

6



Remarque 4.9. Les équations précédentes, dites de Mordell, sont des exemples d’équations
de courbes elliptiques, dont I’étude générale est plus que jamais d’actualité pour leurs ap-
plications en cryptographie et leur prépondérance dans la recherche en théorie des nombres
contemporaine. Curieusement, la démonstration du dernier théoreme de Fermat passe par celle
d’une propriété profonde des courbes elliptiques définies sur Q.

Théoréme 4.10 (des deux carrés). Soit n € N*. Alors I’équation ¥ + y* = n est résoluble en
nombres entiers si et seulement si pour tout facteur premier p de n congru a 3 modulo 4, la
valuation p-adique de n est paire.

Démonstration. Commengons par remarquer que z2 + y*> = N(z + iy) dans anneau Z[].
Puisque la norme est multiplicative, on voit que la propriété d’étre somme de deux carrés est
multiplicative également. Ainsi, il suffit de déterminer les nombres premiers qui le sont. Il est
clair que 2 = 12 + 12, on va maintenant montrer que si p est un nombre premier impair, alors
p est somme de deux carrés si et seulement si p = 1 mod 4.

Les carrés modulo 4 étant 0 et 1, on voit que si p = 3mod 4 alors p ne peut s’écrire comme
somme de deux carrés. Si p = 1mod 4, montrons que p est réductible dans Z[i], de sorte que
p = z129 avec z1, 2y € Z[i] non inversibles, et donc de norme différente de 1. On aura alors
p? = N(p) = N(z1)N(22) et donc N(z1) = N(z2) = p, et donc que p est somme de deux carrés.
On a Z[i]/(p) = (Z[X]/(X?+1))/(p) ~ Z[X]/(p, X% + 1) = F,[X]/(X? + 1) est integre si et
seulement si X2 + 1 est irréductible dans F,[X] si et seulement si p = 3mod 4. Comme Z[i] est
factoriel, on en déduit que p est irréductible dans Z[i] si et seulement s’il est premier dans Z][i]
si et seulement si p = 3mod 4.

On en déduit qu’'un entier tel que dans I’énoncé est bien somme de deux carrés puisque c’est
le produit de puissances de 2 et de premiers congrus a 1 modulo 4 et d’'un carré (constitué de
ses facteurs premiers congrus a 3 modulo 4).

Réciproquement, si n = 22 + y? alors n = d?(a® + %) avec d = PGCD(z,y) et a et b
premiers entre eux. Si p est un facteur premier impair de a® + 0%, alors p est nécessairement
réductible dans Z[i], et donc congru a 1 modulo 4, ce qui permet ce conclure. En effet, si p était
irréductible, il serait premier et diviserait a + ib ou a — ¢b. Mais s’il divise 1'un, il divise l'autre
en passant au conjugué, donc il divise leurs somme et différence, soit p | 2a et p | 2ib. Comme
p est impair, p | a et p | b, ce qui est absurde. ]

5 Exercices

Exercice 12 (Echauffement). 1. Montrer que 13 divise 3'26 4 5126,
2. Montrer de maniére élémentaire qu’il n'existe pas d’entiers x ety tels que 152% —8y% = 9.
3. Déterminer les entiers x vérifiant x = 7Tmod 18, x = 1 mod 30 et x = 16 mod 45.

Exercice 13 (Regles de divisibilité). 1. Démontrer la régle de 3 : n est divisible par 3 si et
seulement si la somme de ses chiffres [’est.

2. Donner des regles de 2,5,9 et 11.

Exercice 14. Soit n = [[,_, p;" avec les p; premiers distincts et les a; dans N. Donner une
formule pour le nombre de diviseurs (positifs) de n.



Exercice 15 (Formule d’inversion de Mébius). On note A l'ensemble des fonctions arithmé-
tiques, c¢’est-a-dire les fonctions de N* — C. Si f,g € A, on note

frgine ) f(n)g(n/d)

dln

leur convolution de Dirichlet. On vérifie immédiatement qu’il s’agit d’une loi qui fait que
(A, +, %) un anneau commutatif de neutre §, la fonction indicatrice de {1}.

1. Donner une condition nécessaire et suffisante pour que f € A soit inversible.

2. On dit que f € A est multiplicative lorsque f(ab) = f(a)f(b) pour a et b premiers
entre eux. Soit f € A* multiplicative. Montrer que f~' est multiplicative. (Indication :
Commencer par construire un inverse g sur les puissances de nombres premiers et vérifier
que la fonction définie par n = [I;_, p;" — [l g (pj") convient.)

3. On note p Uinverse de la fonction constante égale a 1. Calculer u(p®) pour n’importe quel
nombre premier p et k € N, et en déduire une formule pour u(n) avec n € N*.

4. Montrer la formule d’inversion de Mobius : Si ¥n > 1, f(n) = X4, 9(d) alors
Vn 2 1,9(n) = X f(d)p(n/d).

u(d)

5. Montrer que, pour tout n > 1, o(n) = n >y, &5

Remarque. La combinatoire sous-jacente montre qu’on a également ®,, = Hd‘n(Xd — 1)un/d)
pour tout n € N*.

Exercice 16. Soit ¢ une puissance de nombre premier impair. Montrer que 7Z/qZ* posséde
exactement %q) carrés sans utiliser la cyclicité de ce groupe. (Indication : On pourra montrer
que si x> = a mod p" alors il existe h € Z tel que (x + hp)?> = amod p™*t.) En déduire le

nombre de carrés dans Z/nZ>* pour nimporte quel n > 2.

Remarque. La méthode utilisée ici pour « remonter » une congruence modulo p™ en une
congruence modulo p"*! s’appelle le lemme de Hensel.

Exercice 17. 1. Montrer qu’il existe une infinité de nombres premiers congrus a 3 modulo
4. (Indication : Sipy,...,p. sont de tels nombres premiers, considérer 4p; ...p, — 1.)

2. Montrer qu’il existe une infinité de nombres premiers congrus ¢ 1 modulo 4. (Indication :
Sipi,...,p, sont de tels nombres premiers, considérer 4(py...p.)% +1.)

3. Montrer qu’il existe une infinité de nombres premiers congrus a 7 modulo 8. (Indication :
Sipi,...,p, sont de tels nombres premiers, considérer (4p; ...p,)% —2.)

Remarque. En utilisant les polynomes cyclotomiques, on peut montrer a l’agreg que pour tout
q > 2, il existe une infinité de nombres premiers congrus a 1 modulo q. Le cas général nécessite
des outils algébriques et analytiques (caractéres du groupe (Z/qZ)*, séries de Dirichlet...).

Exercice 18. 1. Justifier que pour x > 2,

P = 1]

p<w

p premier

T > In(x).
P



2. Montrer que
1
In P(z) = Z -+ 0O(1).
p<w p

p premier

1
3. En déduire que Z — diverge. (En particulier, il existe une infinité de nombres pre-
p premier
miers...)

4. On suppose qu’il existe une mesure de probabilité p sur P(N) telle que pour tout k €
N*, pu(kN) = 1.

(a) Montrer que si a,b € N sont premiers entre euz, alors aN et bN sont indépendants.

(b) En déduire que si k € N* alors pour tout n > k,

ZOES 1§ (1—;).

p premier

(c) Conclure.

Exercice 19. En admettant le théoréeme de la progression arithmétique, montrer qu’un entier
n est un carré dans 7 si et seulement si c’est un carré modulo tout nombre premier p.

Exercice 20 (Inégalités de Tchebytchev). Pour tout x > 2, on note

m(z) = #{p < x | p premier} et O(z) = > Inp.

p<w

p premier

On va montrer qu’il existe des constantes cy,co > 0 telles que

T < (@) < T
co— < 7m(x Co—.
"nz = = Zlnz

1. Pour tout entier n € N*, montrer que

II »l <2n> <2

n<p<2n n

2. En déduire que pour n € N*, 0(2n) — 0(n) < nln4.

3. Montrer que 0(x) = O(x) et en déduire que w(x) = O ( L )

Inz
22n 2n
2n — \(n
5. Montrer la formule de Legendre : St p est premier et n > 2 est entier alors

o) =3 H

i
=1 LP

4. Montrer que pour n € N*,

et en déduire que (27?) < (2n)™®". On pourra constater que |2x| — 2|z| < 1 pour tout
réel x.



6. En déduire que 1~ = O(m(x)).

7. Montrer le postulat de Bertrand faible : Il existe une constante t > 1 telle que pour tout
entier n > 2, il existe un nombre premier entre n et tn.
Remarque. Le théoréme des nombres premiers permet de voir que tout réel de la
forme 1 + € avec € > 0 convient, au moins quand n est assez grand en fonction de ¢.
Exercice 21. Quels sont les nombres premiers p tels que 7 est un carré modulo p ?

Exercice 22. Soit p un nombre premier et n € N*. Montrer que ®,n = <I>p(Xpn71).

Exercice 23. On appelle entier algébrique tout nombre algébrique dont le polynéme minimal
(sur Q) est a coefficients dans Z. On admet que la somme et le produit d’entiers algébriques

sont des entiers algébriques?.

1. Parmi les nombres suivants, lesquels sont des entiers algébriques ¢

n

1\/§’1+\/§%1+z\/ﬁ 2im <2w>

5 5 5 ,en , Cos

2. Montrer qu’un rationnel est un entier algébrique si et seulement si c¢’est un entier.

3. Si K est un corps de nombres, alors {o € K | « est un entier algébrique} est un sous-
anneau de K, noté Og. Pour tout d € Z sans facteur carré, déterminer (9@(\/3) (avec

la convention /d = i\/|d| quand d < 0). On pourra se servir du fait suivant : si o =
a+bVd € Q(vd) avec b# 0 et @ = a — bV/d alors tr(a) = a +a et N(a) = a@ sont les

coefficients du polynome minimal de o sur Q.

4. On note A ['anneau des entiers algébriques. Montrer que c’est un anneau de Bézout non
principal. (Indication : Pour le caractére non principal, raisonner sur les degrés en tant
que nombres algébriques. Pour le caractére de Bézout, on pourra admettre que dans tout
corps de nombres, tout idéal de son anneau d’entiers a une puissance principale.)

Exercice 24 (Corps cyclotomiques). Dans tout ’exercice, on note ¢, = e pour tout n € N*.
1. Soit n un entier impair. Montrer que Q((,) = Q(Can).

2. Montrer que si m est pair et r est un multiple de m tel que p(r) < p(m), alors Q(() =
Q(¢r)-

3. Montrer que les seules racines de l'unité dans Q((y,) sont les puissances de (, quand m
est pair, et les puissances de Com quand m est impair. (Indication : Quand m est pair,
si w est une racine primitive k-iéme de Uunité dans Q((,,), montrer qu’il existe u,v € Z
tels que ¢, = (*w", avec r = PPCM(m, k).)

4. En déduire une condition nécessaire et suffisante pour que Q((,) = Q((n)-

o2
p

5. Soit p un nombre premier impair. Montrer que Q((,) R = Q (cos (
de degré 1%1 de Q.

)) est une extension

2. Cela se montre comme pour les nombres algébriques, a ’aide de la caractérisation suivante : @ € C est un
entier algébrique si et seulement le Z-module Z[a] est de type fini, et le fait qu'un sous-module d’un module de
type fini sur un anneau principal (comme Z) est également de type fini.
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Exercice 25. 1. Soit n € N* et q une puissance du nombre premier p. Montrer que ®,
admet une racine dans ¥, si et seulement si F, contient une racine primitive n-ieme de
lunité.

2. Déterminer le nombre et le degré des facteurs irréductibles de ®,, dans F,[X].

3. En déduire une démonstration alternative de lirréductibilité de ®,, dans Q[X]| quand
(Z/nZ)* est cyclique.

Exercice 26. Montrer que les seules solutions de I'équation diophantienne y?> = x3 — 2 sont

(3,5) et (3,-5).

Exercice 27. On rappelle que Z[j] est un anneau euclidien.
1. Déterminer les inversibles de Z[j].
2. Montrer que A =1 — j est un irréductible de Z[j].

3. Soit p un nombre premier différent de 3. Donner une condition nécessaire et suffisante
pour qu’il soit irréductible dans Z[j] en termes de congruence modulo 3.

2

4. En déduire l'ensemble des entiers n qui s’écrivent sous la forme x> — xy + v2.

Remarque. De la méme maniére, on peut déterminer a la main les nombres premiers (puis les
entiers) s’écrivant sous la forme 12 + 2y* ou encore x* — 2y*. Quand vous aurez passé l'agreg,
je vous recommande « Primes of the form z? 4+ ny? » pour voir jusqu’ot méne ce genre de
questions !

Exercice 28. Soit n = 4°(8b + 7). Montrer que n ne peut s’écrire comme la somme de trois
carrés d’entiers.
Remarque. La réciproque est vraie mais est beaucoup plus difficile.

Exercice 29 (Théoreme des quatre carrés de Lagrange). On va montrer que tout entier naturel
n peut s’écrire comme somme de quatre carreés.

1. Montrer que si a et b sont sommes de quatre carrés, alors il en est de méme de ab.
(Indication : On pourra penser aux quaternions.) En déduire qu’il suffit de montrer que
chaque nombre premier s’écrit comme somme de quatre carrés.

2. Montrer que 2 est somme de quatre carrés.

3. Soit p un nombre premier impair, montrer qu’il existe a,b € {0,..., %} tels que p |
a’>+b*+1. (Indication : Compter les éléments de Z/pZ de la forme a® et ceuz de la forme
—b?—1.)

4. Soit k le plus petit entier entier naturel non nul tel que kp soit somme de quatre carrés.
On va montrer que k = 1. Justifier, a l'aide de la question précédente, que 1 < k < p.

(—k+1)

5. Notons kp = a3 + a3 + x5 + x3. Pour 1 < i < 4, notons y; lentier compris entre “—

et %5 et congru a x;. Justifier que i+ yi+ys+ vyl =kqavec 0 < g < k.

6. Montrer que (kp)(kq) est une somme de quatre carrés et en déduire que qp également.
Conclure.
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Remarque. L’anneau des quaternions de Hurwitz de la forme w avec a,b,c,d € Z
de méme parité est « principal » (il n’est pas commutatif). La question iii) montre qu’il existe
un quaternion de Hurwitz q tel que p divise |q|*. L’idéal engendré par q et p étant principal, il
est engendré par un quaternion ¢ diviseur strict de p, et |¢'|* est une somme de quatre carrés
divisant strictement p*, c’est donc p.

Exercice 30 (Réciprocité quadratique). Soit p et g des nombres premiers impairs distincts.

1. Notons p = 2k + 1. Montrer que (k!)* = (—=1)""'modp (penser d la démonstration du
théoréme de Wilson).

2. On note G =F) x Fx/{(—=1,—1)) et la classe de (a,b) est notée [a,b]. Montrer que tout
élément de G s’écrit de maniére unique [a,b] avec 1 <a<ketl1<b<gqg-1.

3. Notons E={m e N|1<a< % et m est premier avec p et q}. A Uaide du théoréme
chinois, montrer que tout élément de G s’écrit de maniére unique sous la forme [a, a] avec
a€ k.

k
4. Posons P = H a et @ = H qa. Calculer Qmodp, PQ modp et en déduire P mod p.

acE a=1

5. Calculer de deur manieres différentes le produit des éléments de G, et en déduire la loi
de réciprocité quadratique.

Exercice 31. On introduit le symbole de Jacobi (%) pour a € Z et n = []_, pi"* avec les p;

premiers impairs par
a T (a\”
(n) B g <p1> '

1. Montrer que si a est un carré non nul modulo n alors (%) = 1. Montrer que la réciproque
est fausse.
2

2. Montrer que (%1) — (=) et (%) = (-1)"5".

3. Montrer que sim et n sont impairs et premiers entre euz alors (%) (%) =(-1)"z (-1)= .

4. Soit maintenant p un nombre premier congru a 1 modulo 4. D’apres le théoreme des deux
carrés, il existe a,b € Z tels que p = a* + b?. Justifier que l'un des deux est impair.

5. Sans perdre de généralité, supposons que a est impair. Montrer que (%) =1.

(a+b)2—1

6. En calculant (a + b)? + (a — b)?, montrer que (“be) = (=)™ puis que (a+b)"T =
(Zab)% mod p.

7. Jusltiﬁer qu’il existe ¢ € Z tel que b = acmodp. Montrer que ¢ = —1modp et que
- ab
2T = ¢% modp.

8. En déduire que 2 est une puissance quatriéme modulo p si et seulement si p peut s’écrire
sous la forme a® + 64b°.
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