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Arithmétique

1 Autour de l’anneau Z/nZ
Rappelons le résultat suivant.

Proposition 1.1. Soit n ≥ 2 et k ∈ Z. Les propositions suivantes sont équivalentes :

1. k est inversible dans Z/nZ.

2. k est un générateur du groupe (Z/nZ, +).

3. k est premier avec n.

Définition 1.2. Soit n ≥ 1. L’indicatrice d’Euler de n, notée φ(n), est 1 si n = 1 et le
nombre d’entiers k ∈ {1, . . . , n − 1} premiers avec n sinon.

En vertu du théorème chinois, on a la propriété suivante.

Proposition 1.3. Pour tout m, n ≥ 1 premiers entre eux, φ(mn) = φ(m)φ(n) (on dit que φ
est multiplicative).

Corollaire 1.4. Soit n ≥ 2. Alors

φ(n) = n
∏
p|n

p premier

(
1 − 1

p

)
.

Démonstration. Si p est un nombre premier et α ≥ 1 alors les entiers entre 0 et pα − 1 premiers
avec pα sont ceux qui ne sont pas divisibles par p car p est premier. Il y en a donc pα − pα−1 =
pα
(
1 − 1

p

)
. La formule générale s’en déduit par multiplicativité de φ.

Proposition 1.5 (Théorème d’Euler). Soit n ≥ 2 et a ∈ Z/nZ×. Alors aφ(n) = 1.

Théorème 1.6. Soit n ≥ 2. Le groupe Z/nZ× est cyclique si et seulement si n est de la forme,
2, 4, pα ou 2pα avec p premier impair et α ≥ 1.

Exercice 1. Montrer que la condition est nécessaire.

Remarque 1.7. Le caractère suffisant se montre en construisant un élément d’ordre p − 1
dans Z/pαZ× à partir d’un élément d’ordre p − 1 dans Fp, et un élément d’ordre pα−1 (la classe
de 1 + p convient). Leur produit est alors d’ordre pα−1(p − 1) puisqu’ils commutent et leurs
ordres sont premiers entre eux. La même méthode permet de montrer que Z/2αZ est engendré
par −1 et 5 dès que α ≥ 3. Ainsi, Z/2αZ× ≃ Z/2Z × Z/2α−2Z pour α ≥ 3.
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2 Nombres premiers
Théorème 2.1 (Euclide). Il existe une infinité de nombres premiers.

Démonstration. Une des plus vieilles démonstrations de l’histoire (c’est un peu l’équivalent
des peintures rupestres pour les maths) : Soit p1, . . . , pr des nombres premiers distincts. Alors
l’entier 1 + p1 . . . pr est supérieur ou égal à 2 donc admet un facteur premier p, distinct de
p1, . . . , pr, sans quoi p diviserait 1.

Remarque 2.2. Ce n’est pas un raisonnement par l’absurde ! On montre que toute liste finie
d’entiers est incomplète, on n’a pas besoin de supposer que la liste complète l’est pour conclure
à une absurdité.

On peut quantifier le caractère infini des nombres premiers avec le théorème culturel suivant.

Théorème 2.3 (des nombres premiers (malheureusement admis)). Pour x ≥ 2, notons π(x)
le nombre de nombres premiers inférieurs ou égaux à x. Alors

π(x) ∼
x→+∞

x

ln x
.

Il faut savoir dire que la démonstration utilise l’analyse complexe et l’étude de la fonction
ζ de Riemann.

Un autre théorème culturel à connaître (et dont la version faible avec a = 1 est abordable
à l’agrégation) est le suivant.

Théorème 2.4 (de la progression arithmétique de Dirichlet (admis)). Soit a, q ∈ Z premiers
entre eux. Alors il existe une infinité de nombres premiers p ≡ a mod q.

Exercice 2 (Nombres premiers de Fermat). Montrer que si 2n +1 est un nombre premier alors
n est une puissance de 2.

Exercice 3 (Nombres premiers de Mersenne). Montrer que si 2n − 1 est un nombre premier
alors n est un nombre premier.

Définition 2.5. Soit p un nombre premier. Le symbole de Legendre modulo p est la fonction

(
·
p

)
: n 7→


1 si n est un carré non nul modulo p,
−1 si n n’est pas un carré modulo p,

0 si p divise n.

Proposition 2.6. Le symbole de Legendre est multiplicatif : pour tout a, b ∈ Z,
(

a
p

) (
b
p

)
=
(

ab
p

)
.

Démonstration. Cela vient du fait que l’ensemble des carrés est un sous-groupe d’indice 2 de
F×

p .

Théorème 2.7 (Loi de réciprocité quadratique). Soit p et q des nombres premiers impairs
distincts. Alors (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Remarque 2.8. Autrement dit, la loi de réciprocité quadratique affirme que
(

p
q

)
=
(

q
p

)
, sauf

dans le cas où p et q sont tous les deux congrus à 3 modulo 4, auquel cas les deux symboles
sont opposés.
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On propose une démonstration dans les exercices inspirée du théorème de Wilson. Il y en
a beaucoup d’autres abordables à l’agrégation (sommes de Gauss, comptage de points dans Fp

et la classification des formes quadratiques, etc.) et on en connaît à ce jour plus de 300 !

Exercice 4. Est-ce que 713 est un carré modulo 1009 ?

Exercice 5. Soit p un nombre premier impair. Montrer que(
2
p

)
=
{

1 si p ≡ ±1 mod 8
−1 si p ≡ ±3 mod 8.

(Indication : Si ζ est une racine primitive 8-ième de l’unité dans Fp, alors (ζ + ζ−1)2 = 2.)

Méthode : Pour tester si un petit nombre n est premier, on vérifie s’il est divisible par les
nombres premiers inférieurs à

√
n. Cette méthode est hautement inefficace quand n devient

grand, et on préfère des tests qui se basent sur des propriétés impliquées par le fait que Z/nZ
doit être un corps (tests de Fermat, Miller-Rabin, Solovay-Strassen, etc.).

Exercice 6. Soit n = 561. Montrer que pour tout a ∈ Z premier avec n, an−1 ≡ 1 mod n. En
déduire qu’on ne peut pas assurer la primalité d’un entier à l’aide du petit théorème de Fermat.

Définition 2.9. Un entier n non premier tel que pour tout a premier avec n, an−1 ≡ 1 mod n
est un nombre de Carmichael.

Théorème 2.10 (Critère de Korselt). Un entier n ≥ 2 est un nombre de Carmichael si et
seulement si n est sans facteur carré, et pour tout diviseur premier p de n, p − 1 divise n − 1.

3 Corps de nombres
Définition 3.1. Un corps de nombres est une extension finie de Q.

Exemple 3.2.

1. Les corps quadratiques réels Q(
√

d) avec d ≥ 2 sans facteur carré.

2. Les corps quadratiques imaginaires Q(i
√

d) avec d ∈ N∗ sans facteur carré.

3. Les corps cyclotomiques Q(ζn), avec ζn une racine primitive n-ième de l’unité.

4. Le corps de décomposition Q( 3
√

2, ζ3) de X3 − 2 sur Q.

5. Q n’est pas un corps de nombres, mais les contient tous.

3.1 Corps cyclotomiques
Définition 3.3. Soit n ≥ 1. Le n-ième polynôme cyclotomique est

Φn =
∏

ζ racine primitive n−ième de l’unité
(X − ζ).

Exercice 7. Soit p un nombre premier. Déterminer Φp et montrer que Φp est irréductible dans
Q[X] en appliquant le critère d’Eisenstein au polynôme Φp(X + 1).
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Proposition 3.4. Pour tout n ∈ N∗,

Xn − 1 =
∏
d|n

Φd.

Théorème 3.5. Soit n ≥ 1. Alors Φn ∈ Z[X], est de degré φ(n) et est irréductible dans Q[X].

Démonstration. Le degré est clair. Au vu de l’égalité Xn − 1 = ∏
d|n Φd, le fait que Φn ∈ Z[X]

se montre par récurrence sur n : le cas n = 1 est clair, et si le résultat est montré pour tous les
d < n, on pose la division euclidienne de Xn − 1 par ∏d|n

d̸=n

Φd dans Z[X], ce qui est possible car

ce dernier est unitaire.
L’irréductibilité nécessite plus de travail. Soit ζ une racine primitive n-ième de l’unité et

P son polynôme minimal sur Q. Alors P ∈ Z[X] car il divise (dans Q[X]) l’un des facteurs
irréductibles dans Z[X] de Φn, et lui est donc égal car ils sont unitaires (lemme de Gauss).

Soit p un nombre premier ne divisant pas n. Alors ζp est encore une racine primitive n-ième
de l’unité et on note Q son polynôme minimal sur Q. Comme avant, il est dans Z[X] et on va
montrer que P = Q. Si ce n’était pas le cas, on aurait PQ | Φn dans Z[X] puisque les deux
sont irréductibles et Z[X] est factoriel. Mais on a aussi P | Q(Xp) dans Q[X], puis dans Z[X]
comme avant. Or, Q(Xp) = Q(X)p modulo p, et donc un facteur irréductible de P est également
facteur irréductible de Q, et donc un facteur multiple de Φn. Or un tel facteur n’existe pas car
Xn − 1 est sans facteur carré puisque premier avec sa dérivée nXn−1 ̸= 0. On a donc P = Q et
notamment P (ζp) = 0.

Pour finir, si m ∈ {1, . . . , n − 1} est premier avec n, on écrit m = p1 . . . pr avec les pi des
nombres premiers (pas forcément distincts) ne divisant pas n, et l’argument précédent montre
par récurrence sur r que ζm est racine de P . Finalement, P divise Φn et a au moins autant de
racines, ils sont donc associés (même égaux puisqu’ils sont unitaires) et Φn est bien irréductible
dans Q[X].

Corollaire 3.6. Pour tout n ≥ 1, Φn est le polynôme minimal de ζn. De plus, [Q(ζn) : Q] =
φ(n).

3.2 Corps quadratiques
Proposition 3.7. L’anneau Z[i] ⊂ Q(i) est euclidien pour le stathme N : a + ib 7→ a2 + b2.

Démonstration. Puisque N est le carré du module, il est multiplicatif, et il est clair qu’il est
à valeurs dans N. Soit a, b ∈ Z[i] avec b ̸= 0. Pour trouver q, r ∈ Z[i] tels que a = bq + r

et N(r) < N(b), il suffit de trouver q ∈ Z[i] de sorte que N
(

a
b

− q
)

< 1. Or, si a
b

= u + iv,
avec u, v ∈ Q, on prend q1, q2 ∈ Z avec |u − q1|, |v − q2| ≤ 1

2 , et alors N
(

a
b

− (q1 + iq2)
)

=
(u − q1)2 + (v − q2)2 ≤ 1

2 < 1.

Proposition 3.8. L’anneau Z[j] ⊂ Q(j) est euclidien pour le stathme N : a+jb 7→ a2 −ab+b2.

Démonstration. Puisque N est le carré du module, il est multiplicatif, et il est clair qu’il est
à valeurs dans N. Soit a, b ∈ Z[j] avec b ̸= 0. Pour trouver q, r ∈ Z[j] tels que a = bq + r

et N(r) < N(b), il suffit de trouver q ∈ Z[j] de sorte que N
(

a
b

− q
)

< 1. Or, si a
b

= u + jv,
avec u, v ∈ Q, on prend q1, q2 ∈ Z avec |u − q1|, |v − q2| ≤ 1

2 , et alors N
(

a
b

− (q1 + jq2)
)

=
(u − q1)2 − (u − q1)(v − q2) + (v − q2)2 ≤ 1

2 + 1
4 < 1.

Exercice 8. Montrer que Z[
√

2] est euclidien pour le stathme N : a + b
√

2 7→ |a2 − 2b2|.
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Remarque 3.9. Les anneaux Z[ζn], Z[i
√

d] (pour d ≡ 1 mod 4) et Z
[

1+i
√

d
2

]
(pour d ≡ 3

mod 4 1) sont euclidiens pour de petites valeurs de n et de d, mais ce n’est pas une généralité :
il n’y a en fait qu’un nombre fini de valeurs de d et de n pour lesquelles ces anneaux peuvent
être principaux. Nous allons voir ci-dessous que cette propriété peut être très précieuse pour la
résolution de certaines équations. En ce qui concerne les anneaux de la forme Z[

√
d] et Z

[
1+

√
d

2

]
,

la situation est beaucoup plus compliquée : on ne sait pas à ce jour s’il en existe une infinité
qui sont principaux !

4 Équations diophantiennes
Définition 4.1. Une équation diophantienne est une équation polynomiale à coefficients
entiers dont on cherche les solutions entières (ou rationnelles).

Exemple 4.2.

1. L’équation de Pell-Fermat x2 − dy2 = 1 avec d ∈ N.

2. L’équation de Fermat xn + yn = zn avec n ∈ N∗.

3. Les équations de Mordell y2 = x3 + k avec k ∈ Z.

Exercice 9. Soit a, b, c ∈ Z non nuls. Déterminer quand l’équation diophantienne ax + by = c
admet des solutions dans Z, et les déterminer.

Exercice 10. Résoudre l’équation diophantienne 103x + 78 = y2.

Théorème 4.3 (Triplets pythagoriciens). Soit x, y, z ∈ Z premiers entre eux dans leur ensemble
avec x impair. On a x2 + y2 = z2 si et seulement s’il existe des entiers u, v ∈ Z premiers entre
eux et de parités différentes tels que x = u2 − v2, y = 2uv et z = u2 + v2.

Démonstration. Un calcul montre que la condition est suffisante. Réciproquement, si x2+y2 = z2

alors x2 = (z − y)(z + y). Ainsi, tout facteur premier p de x divise z − y ou z + y, mais pas les
deux. Dans le cas contraire, p diviserait (z − y) + (z + y) = 2z et (z − y) − (z + y) = −2y et
donc y et z puisque p ̸= 2, ce qui est absurde car x, y et z sont premiers entre eux dans leur
ensemble. Ensuite, p2vp(x) divise z −y ou z +y, mais pas les deux. Réciproquement, tout facteur
premier de z − y et de z + y est un facteur premier de x avec valuation paire. On en déduit
que z − y = a2 et z + y = b2 avec x = ab (a est le produit des puissances de nombres premiers
divisant x et z − y, de même pour b avec z + y). Pour obtenir la décomposition voulue, on pose
u = a+b

2 et v = a−b
2 .

Remarque 4.4. Ce résultat permet de trouver tous les triplets pythagoriciens en factorisant
par le carré du PGCD de (x, y, z) et quitte à échanger les rôles de x et y pour que x soit impair
(ils ne peuvent pas être tous les deux pairs, sinon z le serait aussi).

Exercice 11. 1. Montrer que, pour trouver les triplets pythagoriciens, il suffit de trouver
les points rationnels du cercle unité dans le plan.

2. Déterminer ces points rationnels, en utilisant la paramétrisation suivante : considérer le
point d’intersection entre le cercle unité et la droite passant par (−1, 0) et de pente un
rationnel t ∈ Q.

1. Cette condition garantit que Z
[

1+i
√

d
2

]
est l’anneau des entiers de Q(i

√
d), voir l’Exercice 23.
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Corollaire 4.5. L’équation de Fermat x4 + y4 = z4 n’admet pas de solution non triviale,
c’est-à-dire avec xyz ̸= 0.

Démonstration. On va même montrer qu’il n’y a pas de solution non triviale à l’équation
x4 + y4 = z2. Supposons par l’absurde l’existence d’une telle solution, avec |z| minimal. Alors,
quitte à factoriser et échanger x et y, on peut appliquer le critère des triplets pythagoriciens :
il existe u, v ∈ Z premiers entre eux et de parités différentes tels que x2 = u2 − v2, y2 = 2uv
et z = u2 + v2. Alors x2 + v2 = u2 constitue un triplet pythagoricien avec x impair et x, u, v
premiers entre eux (car u et v le sont), et donc il existe à nouveau a, b ∈ Z premiers entre eux
et de parités différentes tels que x = a2 − b2, v = 2ab et u = a2 + b2. Les entiers u et v sont
premiers entre eux, donc l’un au plus est pair, par exemple v, et alors u et 2v sont premiers
entre eux. Puisque 2uv = y2, u et 2v sont des carrés. Comme 2v = 4ab est un carré, ab aussi
et donc a et b sont des carrés. Si on note u = k2, a = m2 et b = n2 alors on arrive finalement
m4 + n4 = k2 avec |k| = |u|1/2 ≤ |z|1/4 < |z|. La minimalité de |z| donne une contradiction.
Remarque 4.6. On a utilisé la méthode de « descente infinie » de Fermat, qui est équivalente
au principe de récurrence, ou encore au caractère bien ordonné de N. Cette même méthode
permet, avec (beaucoup) plus de travail, que l’équation de Fermat n’a pas de solution non
triviales pour n = 3, 5 ou 7, en utilisant l’arithmétique des anneaux Z[j],Z[φ] et Z[i

√
7].

Proposition 4.7. L’équation diophantienne y2 = x3 − 1 a pour unique solution (1, 0) dans Z2.

Démonstration. Il est clair que (1, 0) est solution. Réciproquement, supposons que (x, y) est
solution dans Z2. On a alors x3 = y2 + 1 = (y − i)(y + i) dans Z[i]. Or y + i et y − i sont
premiers entre eux dans Z[i]. En effet, dans le cas contraire, il existerait un élément irréductible
π divisant les deux, donc divisant notamment 2i, qui est irréductible dans Z[i]. Ainsi, π est
associé à 2i, mais il ne peut alors pas diviser y + i (écrivez-le !). Comme Z[i] est factoriel (et
comme ses inversibles sont des cubes), on en déduit que y + i et y − i sont des cubes dans Z[i].
Si par exemple y + i = (a + ib)3 = (a3 − 3ab2) + i(3a2b − b3) alors 3a2b − b3 = (3a2 − b2)b = 1
et donc b = ±1, puis 3a2 = ±1 + 1. La seule possibilité est que a = 0 et b = −1. Finalement,
y = a3 − 3ab2 = 0 et donc x3 = 1, ce qui implique que x = 1.
Proposition 4.8. L’équation diophantienne y2 = x3+1 a pour seules solutions (−1, 0), (0, −1),
(0, 1), (2, 3), (2, −3) dans Z2.

Démonstration. On vérifie immédiatement que les couples annoncés sont bien solutions.
Réciproquement, si (x, y) est une solution dans Z2, alors y2 = (x + 1)(x + j)(x + j2) dans

Z[j]. Si l’un des deux derniers facteurs est premier avec le reste, on procède comme dans
la résolution précédente : Z[j] étant factoriel, ce facteur est associé à un carré de Z[j]. Les
inversibles de Z[j] étant ±1, ±j, et ±j2, et j lui-même étant un carré (j = (j2)2) on peut donc
écrire x + j = ±(a + jb)2 et x + j2 = ±(a + j2b)2 (puisque x + j et x + j2 sont conjugués).
En prenant la différence on obtient ±b(2a − b) = 1 ce qui mène aux couples (−1, 0), (0, −1) et
(0, 1).

Sinon, x + j n’est pas premier avec (x + 1)(x + j2) donc avec x + 1 ou x + j2 et de même
x + j2 n’est pas premier avec x + 1 ou x + j. Dans tous les cas un facteur commun doit
diviser la différence 1 − j, 1 − j2 ou j − j2 qui est de norme 3 et est donc irréductible. Ainsi,
un PGCD de x + 1, x + j et x + j2 est l’élément irréductible λ = 1 − j (associé à chacun
des trois éléments ci-dessus). Comme précédemment, on a donc x + j = ±(1 − j)(a + jb)2 et
x + j2 = ±(1 − j2)(a + j2b)2. En ajoutant les deux, on obtient 2x − 1 = ±3(a2 − b2). Or, x + 1
étant réel, si λ divise x + 1 alors l’élément irréductible distinct 1 − j2 divise aussi x + 1, et donc
a x+1 = ±3a2. Comme y2 ≥ 0 on doit avoir x ≥ −1 et donc x+1 = 3a2. On a donc finalement
6a2 − 3 = ±3(a2 − b2), ce qui mène aux couples (2, −3) et (2, 3).
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Remarque 4.9. Les équations précédentes, dites de Mordell, sont des exemples d’équations
de courbes elliptiques, dont l’étude générale est plus que jamais d’actualité pour leurs ap-
plications en cryptographie et leur prépondérance dans la recherche en théorie des nombres
contemporaine. Curieusement, la démonstration du dernier théorème de Fermat passe par celle
d’une propriété profonde des courbes elliptiques définies sur Q.

Théorème 4.10 (des deux carrés). Soit n ∈ N∗. Alors l’équation x2 + y2 = n est résoluble en
nombres entiers si et seulement si pour tout facteur premier p de n congru à 3 modulo 4, la
valuation p-adique de n est paire.

Démonstration. Commençons par remarquer que x2 + y2 = N(x + iy) dans l’anneau Z[i].
Puisque la norme est multiplicative, on voit que la propriété d’être somme de deux carrés est
multiplicative également. Ainsi, il suffit de déterminer les nombres premiers qui le sont. Il est
clair que 2 = 12 + 12, on va maintenant montrer que si p est un nombre premier impair, alors
p est somme de deux carrés si et seulement si p ≡ 1 mod 4.

Les carrés modulo 4 étant 0 et 1, on voit que si p ≡ 3 mod 4 alors p ne peut s’écrire comme
somme de deux carrés. Si p ≡ 1 mod 4, montrons que p est réductible dans Z[i], de sorte que
p = z1z2 avec z1, z2 ∈ Z[i] non inversibles, et donc de norme différente de 1. On aura alors
p2 = N(p) = N(z1)N(z2) et donc N(z1) = N(z2) = p, et donc que p est somme de deux carrés.
On a Z[i]/(p) = (Z[X]/(X2 + 1))/(p) ≃ Z[X]/(p, X2 + 1) ≃ Fp[X]/(X2 + 1) est intègre si et
seulement si X2 + 1 est irréductible dans Fp[X] si et seulement si p ≡ 3 mod 4. Comme Z[i] est
factoriel, on en déduit que p est irréductible dans Z[i] si et seulement s’il est premier dans Z[i]
si et seulement si p ≡ 3 mod 4.

On en déduit qu’un entier tel que dans l’énoncé est bien somme de deux carrés puisque c’est
le produit de puissances de 2 et de premiers congrus à 1 modulo 4 et d’un carré (constitué de
ses facteurs premiers congrus à 3 modulo 4).

Réciproquement, si n = x2 + y2 alors n = d2(a2 + b2) avec d = PGCD(x, y) et a et b
premiers entre eux. Si p est un facteur premier impair de a2 + b2, alors p est nécessairement
réductible dans Z[i], et donc congru à 1 modulo 4, ce qui permet ce conclure. En effet, si p était
irréductible, il serait premier et diviserait a + ib ou a − ib. Mais s’il divise l’un, il divise l’autre
en passant au conjugué, donc il divise leurs somme et différence, soit p | 2a et p | 2ib. Comme
p est impair, p | a et p | b, ce qui est absurde.

5 Exercices
Exercice 12 (Échauffement). 1. Montrer que 13 divise 3126 + 5126.

2. Montrer de manière élémentaire qu’il n’existe pas d’entiers x et y tels que 15x2 −8y2 = 9.

3. Déterminer les entiers x vérifiant x ≡ 7 mod 18, x ≡ 1 mod 30 et x ≡ 16 mod 45.

Exercice 13 (Règles de divisibilité). 1. Démontrer la règle de 3 : n est divisible par 3 si et
seulement si la somme de ses chiffres l’est.

2. Donner des règles de 2, 5, 9 et 11.

Exercice 14. Soit n = ∏r
i=1 pαi

i avec les pi premiers distincts et les αi dans N. Donner une
formule pour le nombre de diviseurs (positifs) de n.
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Exercice 15 (Formule d’inversion de Möbius). On note A l’ensemble des fonctions arithmé-
tiques, c’est-à-dire les fonctions de N∗ → C. Si f, g ∈ A, on note

f ∗ g : n 7→
∑
d|n

f(n)g(n/d)

leur convolution de Dirichlet. On vérifie immédiatement qu’il s’agit d’une loi qui fait que
(A, +, ∗) un anneau commutatif de neutre δ, la fonction indicatrice de {1}.

1. Donner une condition nécessaire et suffisante pour que f ∈ A soit inversible.

2. On dit que f ∈ A est multiplicative lorsque f(ab) = f(a)f(b) pour a et b premiers
entre eux. Soit f ∈ A× multiplicative. Montrer que f−1 est multiplicative. (Indication :
Commencer par construire un inverse g sur les puissances de nombres premiers et vérifier
que la fonction définie par n = ∏r

i=1 pαi
i 7→ ∏r

i=1 g (pαi
i ) convient.)

3. On note µ l’inverse de la fonction constante égale à 1. Calculer µ(pk) pour n’importe quel
nombre premier p et k ∈ N, et en déduire une formule pour µ(n) avec n ∈ N∗.

4. Montrer la formule d’inversion de Möbius : Si ∀n ≥ 1, f(n) = ∑
d|n g(d) alors

∀n ≥ 1, g(n) = ∑
d|n f(d)µ(n/d).

5. Montrer que, pour tout n ≥ 1, φ(n) = n
∑

d|n
µ(d)

d
.

Remarque. La combinatoire sous-jacente montre qu’on a également Φn = ∏
d|n(Xd − 1)µ(n/d)

pour tout n ∈ N∗.

Exercice 16. Soit q une puissance de nombre premier impair. Montrer que Z/qZ× possède
exactement φ(q)

2 carrés sans utiliser la cyclicité de ce groupe. (Indication : On pourra montrer
que si x2 ≡ a mod pn alors il existe h ∈ Z tel que (x + hp)2 ≡ a mod pn+1.) En déduire le
nombre de carrés dans Z/nZ× pour n’importe quel n ≥ 2.

Remarque. La méthode utilisée ici pour « remonter » une congruence modulo pn en une
congruence modulo pn+1 s’appelle le lemme de Hensel.

Exercice 17. 1. Montrer qu’il existe une infinité de nombres premiers congrus à 3 modulo
4. (Indication : Si p1, . . . , pr sont de tels nombres premiers, considérer 4p1 . . . pr − 1.)

2. Montrer qu’il existe une infinité de nombres premiers congrus à 1 modulo 4. (Indication :
Si p1, . . . , pr sont de tels nombres premiers, considérer 4(p1 . . . pr)2 + 1.)

3. Montrer qu’il existe une infinité de nombres premiers congrus à 7 modulo 8. (Indication :
Si p1, . . . , pr sont de tels nombres premiers, considérer (4p1 . . . pr)2 − 2.)

Remarque. En utilisant les polynômes cyclotomiques, on peut montrer à l’agreg que pour tout
q ≥ 2, il existe une infinité de nombres premiers congrus à 1 modulo q. Le cas général nécessite
des outils algébriques et analytiques (caractères du groupe (Z/qZ)×, séries de Dirichlet...).

Exercice 18. 1. Justifier que pour x ≥ 2,

P (x) =
∏
p≤x

p premier

1
1 − 1

p

≥ ln(x).
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2. Montrer que
ln P (x) =

∑
p≤x

p premier

1
p

+ O(1).

3. En déduire que
∑

p premier

1
p

diverge. (En particulier, il existe une infinité de nombres pre-

miers...)

4. On suppose qu’il existe une mesure de probabilité µ sur P(N) telle que pour tout k ∈
N∗, µ(kN) = 1

k
.

(a) Montrer que si a, b ∈ N sont premiers entre eux, alors aN et bN sont indépendants.
(b) En déduire que si k ∈ N∗ alors pour tout n > k,

µ({k}) ≤
∏

k<p≤n
p premier

(
1 − 1

p

)
.

(c) Conclure.

Exercice 19. En admettant le théorème de la progression arithmétique, montrer qu’un entier
n est un carré dans Z si et seulement si c’est un carré modulo tout nombre premier p.

Exercice 20 (Inégalités de Tchebytchev). Pour tout x ≥ 2, on note

π(x) = #{p ≤ x | p premier} et θ(x) =
∑
p≤x

p premier

ln p.

On va montrer qu’il existe des constantes c1, c2 > 0 telles que

c1
x

ln x
≤ π(x) ≤ c2

x

ln x
.

1. Pour tout entier n ∈ N∗, montrer que

∏
n<p≤2n
p premier

p |
(

2n

n

)
≤ 22n.

2. En déduire que pour n ∈ N∗, θ(2n) − θ(n) ≤ n ln 4.

3. Montrer que θ(x) = O(x) et en déduire que π(x) = O
(

x
ln x

)
.

4. Montrer que pour n ∈ N∗,
22n

2n
≤
(

2n

n

)
.

5. Montrer la formule de Legendre : Si p est premier et n ≥ 2 est entier alors

vp(n!) =
+∞∑
k=1

⌊
n

pk

⌋

et en déduire que
(

2n
n

)
≤ (2n)π(2n). On pourra constater que ⌊2x⌋ − 2⌊x⌋ ≤ 1 pour tout

réel x.
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6. En déduire que x
ln x

= O(π(x)).

7. Montrer le postulat de Bertrand faible : Il existe une constante t > 1 telle que pour tout
entier n ≥ 2, il existe un nombre premier entre n et tn.
Remarque. Le théorème des nombres premiers permet de voir que tout réel de la
forme 1 + ε avec ε > 0 convient, au moins quand n est assez grand en fonction de ε.

Exercice 21. Quels sont les nombres premiers p tels que 7 est un carré modulo p ?

Exercice 22. Soit p un nombre premier et n ∈ N∗. Montrer que Φpn = Φp(Xpn−1).

Exercice 23. On appelle entier algébrique tout nombre algébrique dont le polynôme minimal
(sur Q) est à coefficients dans Z. On admet que la somme et le produit d’entiers algébriques
sont des entiers algébriques 2.

1. Parmi les nombres suivants, lesquels sont des entiers algébriques ?

1
2 ,

√
2,

1 +
√

3
2 , π,

1 + i
√

19
2 , e

2iπ
n , cos

(2π

n

)

2. Montrer qu’un rationnel est un entier algébrique si et seulement si c’est un entier.

3. Si K est un corps de nombres, alors {α ∈ K | α est un entier algébrique} est un sous-
anneau de K, noté OK. Pour tout d ∈ Z sans facteur carré, déterminer OQ(

√
d) (avec

la convention
√

d = i
√

|d| quand d < 0). On pourra se servir du fait suivant : si α =
a + b

√
d ∈ Q(

√
d) avec b ̸= 0 et α = a − b

√
d alors tr(α) = α + α et N(α) = αα sont les

coefficients du polynôme minimal de α sur Q.

4. On note A l’anneau des entiers algébriques. Montrer que c’est un anneau de Bézout non
principal. (Indication : Pour le caractère non principal, raisonner sur les degrés en tant
que nombres algébriques. Pour le caractère de Bézout, on pourra admettre que dans tout
corps de nombres, tout idéal de son anneau d’entiers a une puissance principale.)

Exercice 24 (Corps cyclotomiques). Dans tout l’exercice, on note ζn = e
2iπ
n pour tout n ∈ N∗.

1. Soit n un entier impair. Montrer que Q(ζn) = Q(ζ2n).

2. Montrer que si m est pair et r est un multiple de m tel que φ(r) ≤ φ(m), alors Q(ζm) =
Q(ζr).

3. Montrer que les seules racines de l’unité dans Q(ζm) sont les puissances de ζm quand m
est pair, et les puissances de ζ2m quand m est impair. (Indication : Quand m est pair,
si ω est une racine primitive k-ième de l’unité dans Q(ζm), montrer qu’il existe u, v ∈ Z
tels que ζr = ζu

mωv, avec r = PPCM(m, k).)

4. En déduire une condition nécessaire et suffisante pour que Q(ζn) = Q(ζm).

5. Soit p un nombre premier impair. Montrer que Q(ζp)∩R = Q
(
cos

(
2π
p

))
est une extension

de degré p−1
2 de Q.

2. Cela se montre comme pour les nombres algébriques, à l’aide de la caractérisation suivante : α ∈ C est un
entier algébrique si et seulement le Z-module Z[α] est de type fini, et le fait qu’un sous-module d’un module de
type fini sur un anneau principal (comme Z) est également de type fini.
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Exercice 25. 1. Soit n ∈ N∗ et q une puissance du nombre premier p. Montrer que Φn

admet une racine dans Fq si et seulement si Fq contient une racine primitive n-ième de
l’unité.

2. Déterminer le nombre et le degré des facteurs irréductibles de Φn dans Fp[X].

3. En déduire une démonstration alternative de l’irréductibilité de Φn dans Q[X] quand
(Z/nZ)× est cyclique.

Exercice 26. Montrer que les seules solutions de l’équation diophantienne y2 = x3 − 2 sont
(3, 5) et (3, −5).

Exercice 27. On rappelle que Z[j] est un anneau euclidien.

1. Déterminer les inversibles de Z[j].

2. Montrer que λ = 1 − j est un irréductible de Z[j].

3. Soit p un nombre premier différent de 3. Donner une condition nécessaire et suffisante
pour qu’il soit irréductible dans Z[j] en termes de congruence modulo 3.

4. En déduire l’ensemble des entiers n qui s’écrivent sous la forme x2 − xy + y2.

Remarque. De la même manière, on peut déterminer à la main les nombres premiers (puis les
entiers) s’écrivant sous la forme x2 + 2y2 ou encore x2 − 2y2. Quand vous aurez passé l’agreg,
je vous recommande « Primes of the form x2 + ny2 » pour voir jusqu’où mène ce genre de
questions !

Exercice 28. Soit n = 4a(8b + 7). Montrer que n ne peut s’écrire comme la somme de trois
carrés d’entiers.
Remarque. La réciproque est vraie mais est beaucoup plus difficile.

Exercice 29 (Théorème des quatre carrés de Lagrange). On va montrer que tout entier naturel
n peut s’écrire comme somme de quatre carrés.

1. Montrer que si a et b sont sommes de quatre carrés, alors il en est de même de ab.
(Indication : On pourra penser aux quaternions.) En déduire qu’il suffit de montrer que
chaque nombre premier s’écrit comme somme de quatre carrés.

2. Montrer que 2 est somme de quatre carrés.

3. Soit p un nombre premier impair, montrer qu’il existe a, b ∈ {0, . . . , p−1
2 } tels que p |

a2 +b2 +1. (Indication : Compter les éléments de Z/pZ de la forme a2 et ceux de la forme
−b2 − 1.)

4. Soit k le plus petit entier entier naturel non nul tel que kp soit somme de quatre carrés.
On va montrer que k = 1. Justifier, à l’aide de la question précédente, que 1 ≤ k < p.

5. Notons kp = x2
1 + x2

2 + x2
3 + x2

4. Pour 1 ≤ i ≤ 4, notons yi l’entier compris entre (−k+1)
2

et m
2 et congru à xi. Justifier que y2

1 + y2
2 + y2

3 + y2
4 = kq avec 0 ≤ q < k.

6. Montrer que (kp)(kq) est une somme de quatre carrés et en déduire que qp également.
Conclure.
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Remarque. L’anneau des quaternions de Hurwitz de la forme a+ib+jc+kd
2 avec a, b, c, d ∈ Z

de même parité est « principal » (il n’est pas commutatif). La question iii) montre qu’il existe
un quaternion de Hurwitz q tel que p divise |q|2. L’idéal engendré par q et p étant principal, il
est engendré par un quaternion q′ diviseur strict de p, et |q′|2 est une somme de quatre carrés
divisant strictement p2, c’est donc p.

Exercice 30 (Réciprocité quadratique). Soit p et q des nombres premiers impairs distincts.

1. Notons p = 2k + 1. Montrer que (k!)2 ≡ (−1)n+1 mod p (penser à la démonstration du
théorème de Wilson).

2. On note G = F×
p × F×

q /⟨(−1, −1)⟩ et la classe de (a, b) est notée [a, b]. Montrer que tout
élément de G s’écrit de manière unique [a, b] avec 1 ≤ a ≤ k et 1 ≤ b ≤ q − 1.

3. Notons E = {m ∈ N | 1 ≤ a ≤ pq−1
2 et m est premier avec p et q}. A l’aide du théorème

chinois, montrer que tout élément de G s’écrit de manière unique sous la forme [a, a] avec
a ∈ E.

4. Posons P =
∏
a∈E

a et Q =
k∏

a=1
qa. Calculer Q mod p, PQ mod p et en déduire P mod p.

5. Calculer de deux manières différentes le produit des éléments de G, et en déduire la loi
de réciprocité quadratique.

Exercice 31. On introduit le symbole de Jacobi
(

a
n

)
pour a ∈ Z et n = ∏r

i=1 pαi
i avec les pi

premiers impairs par (
a

n

)
=

r∏
i=1

(
a

pi

)αi

.

1. Montrer que si a est un carré non nul modulo n alors
(

a
n

)
= 1. Montrer que la réciproque

est fausse.

2. Montrer que
(

−1
n

)
= (−1)n−1

2 et
(

2
n

)
= (−1)n2−1

8 .

3. Montrer que si m et n sont impairs et premiers entre eux alors
(

m
n

) (
n
m

)
= (−1)m−1

2 (−1)n−1
2 .

4. Soit maintenant p un nombre premier congru à 1 modulo 4. D’après le théorème des deux
carrés, il existe a, b ∈ Z tels que p = a2 + b2. Justifier que l’un des deux est impair.

5. Sans perdre de généralité, supposons que a est impair. Montrer que
(

a
p

)
= 1.

6. En calculant (a + b)2 + (a − b)2, montrer que
(

a+b
p

)
= (−1)

(a+b)2−1
2 puis que (a + b) p−1

2 ≡
(2ab) p−1

4 mod p.

7. Justifier qu’il existe c ∈ Z tel que b ≡ ac mod p. Montrer que c2 ≡ −1 mod p et que
2 p−1

4 ≡ c
ab
2 mod p.

8. En déduire que 2 est une puissance quatrième modulo p si et seulement si p peut s’écrire
sous la forme a2 + 64b2.
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