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Corps finis

1 Morphisme de Frobenius
Dans cette section, p est un nombre premier.

Proposition 1.1. Soit A un anneau de caractéristique p. Alors pour tout a, b ∈ A qui com-
mutent, (a + b)p = ap + bp.

Démonstration. Il suffit de développer le binôme de Newton pour (a + b)p (puisque a et b

commutent) et de montrer que
(

p
k

)
= 0 dans A, pour 1 ≤ k ≤ p−1. Cette dernière égalité vient

du fait que k
(

p
k

)
= p

(
p−1
k−1

)
est divisible par p et d’une application du lemme de Gauss.

Corollaire 1.2. Soit A un anneau de caractéristique p et n ∈ N. Alors pour tout a, b ∈ A qui
commutent, (a + b)pn = apn + bpn.

Définition 1.3. Soit K un corps de caractéristique p. L’application x 7→ xp est un endomor-
phisme d’anneau de K, appelé le morphisme de Frobenius de K.

Remarque 1.4. Comme tout morphisme de corps, le Frobenius est injectif, mais il n’est
pas surjectif en général. Attention à ne pas immédiatement l’appeler « l’automorphisme de
Frobenius » en caractéristique p. C’est bien un automorphisme dans le cas d’un corps fini.

Corollaire 1.5. Soit K un corps de caractéristique p dans lequel le Frobenius est surjectif et
P ∈ K[X]. Alors P ′ = 0 si et seulement s’il existe Q ∈ K[X] tel que P = Qp.

Démonstration. On a déjà vu que P ′ = 0 équivaut à ce que P = Q̃(Xp) pour un certain

Q̃ ∈ K[X]. En écrivant Q̃ =
n∑

k=0
akXk puis ak = bp

k on a P =
n∑

k=0
bp

kXkp =
(

n∑
k=0

bkXk

)p

. La

réciproque est claire puisque (Qp)′ = pQ′Qp−1.

2 Les corps finis Z/pZ
Lemme 2.1. Soit n ∈ N, n ≥ 2 et k ∈ Z/nZ. Les propriétés suivantes sont équivalentes.

1. k est inversible dans Z/nZ.

2. k engendre le groupe (Z/nZ, +).

3. k est premier avec n.

Démonstration. k est inversible dans Z/nZ si et seulement si 1 ∈ ⟨k⟩, si et seulement si k
engendre le groupe Z/nZ. Ensuite, la congruence ku ≡ 1 mod n équivaut à l’existence d’un
v ∈ Z tel que ku + nv = 1, c’est-à-dire à une relation de Bézout entre k et n, et donc leur
coprimalité.

1



Corollaire 2.2. Soit n ∈ N, n ≥ 2. Les propriétés suivantes sont équivalentes :

1. n est premier.

2. Z/nZ est un corps.

3. Z/nZ est un anneau intègre.

Démonstration. Si n est premier alors tout élément non nul de Z/nZ est la classe d’un entier
non divisible par n, donc premier avec n. D’après le Lemme précédent, ces classes sont toutes
inversibles, donc 1. ⇒ 2. 2. ⇒ 3. est clair. Si n n’est pas premier, on a n = ab avec 1 < a, b < n
et donc a, b ̸= 0, mais ab = 0 et donc, par contraposée, 3. ⇒ 1.

Définition 2.3. Soit p un nombre premier. On note Fp le corps Z/pZ.

Conséquences de la structure de corps de Z/pZ : Petit théorème de Fermat, critère
d’irréductibilité par réduction dans Z[X] facile à vérifier (application à l’irréductibilité des
polynômes cyclotomiques), structure particulière des carrés (critère d’Euler, loi de réciprocité
quadratique), application aux équations diophantiennes (voir feuille suivante)...

3 Construction des corps finis
Proposition 3.1. Soit K un corps fini. Il existe un nombre premier p et n ∈ N∗ tels que
|K| = pn.

Démonstration. K étant intègre, sa caractéristique est 0 ou un nombre premier. Mais si sa
caractéristique était 0, K contiendrait un sous-anneau isomorphe à Z, ce qui est impossible
puisque K est fini. Soit donc p la caractéristique de K. Le sous-anneau de K engendré par 1
est alors isomorphe à Fp. K étant fini, il est un Fp-espace vectoriel de dimension finie n ≥ 1. Si
(e1, . . . , en) est une base de K, l’application

(x1, . . . , xn) 7→
n∑

k=1
xkek

est une bijection de (Fp)n dans K et donc |K| = pn.

Nous allons maintenant montrer la réciproque de la proposition précédente.

Proposition 3.2. Soit p un nombre premier et n ∈ N∗. Si un corps fini K a pour cardinal pn,
alors K est un corps de décomposition de Xpn − X ∈ Fp[X].

Démonstration. Il est clair que 0 est racine de Xpn −X. De plus, K× est d’ordre pn −1 et donc,
d’après le théorème de Lagrange, pour tout x ∈ K×, xpn−1 = 1 et donc xpn = x. Ainsi, Xpn −X
est scindé dans K et ses racines sont exactement les éléments de K. En particulier, K = Fp(K)
et donc K est un corps de décomposition de Xpn − X sur Fp.

Théorème 3.3. Soit p un nombre premier et n ∈ N∗. Alors il existe un corps fini de cardinal
pn. De plus, celui-ci est unique à isomorphisme près.

Démonstration. Considérons le corps de décomposition K de Xpn − X sur Fp. Alors les pn

éléments de K qui sont les racines de Xpn − X forment un sous-corps F de K, ce que l’on voit
en utilisant l’automorphisme de Frobenius. Comme K est engendré par F , on a donc K = F
et |K| = pn. L’unicité vient de la Proposition 3.2 et du fait qu’un corps de décomposition est
unique à isomorphisme près.
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Définition 3.4. Soit q une puissance de nombre premier. On note Fq le corps fini à q éléments.

Remarque 3.5. !△ Quand q = pn est une puissance d’un nombre premier, avec n ≥ 2, le
corps Fpn n’a pas grand-chose à voir avec Z/pnZ ou (Fp)n ! Ces derniers ne sont même pas
intègres.

Exemple 3.6. Le polynôme X2 + X + 1 est irréductible dans F2[X] car il est de degré 2 et
sans racine, et donc on peut construire F4 comme étant F2[X]/(X2 + X + 1).

4 Propriétés des corps finis
Proposition 4.1. Soit q une puissance de nombre premier. Alors (F×

q , ×) est un groupe cy-
clique.

Démonstration. C’est un résultat vu en théorie des groupes : tout sous-groupe fini du groupe
multiplicatif d’un corps est cyclique.

Proposition 4.2. Soit q une puissance de nombre premier et K un corps contenant Fq. Alors
pour tout x ∈ K, x ∈ Fq si et seulement si xq = x.

Démonstration. Par construction des corps finis comme corps de décomposition.

Exercice 1. Montrer que si d | n alors Xqd − X | Xqn − X dans Z[X].

Proposition 4.3. Soit q une puissance de nombre premier et d, n ∈ N. Alors Fqn est une
extension de corps de Fqd si et seulement si d | n.

Démonstration. Si Fqn/Fqd est une extension de corps, alors la multiplicativité des degrés donne
que [Fqd : Fq] | [Fqn : Fq], c’est-à-dire d | n.

Réciproquement, si d | n, alors Xqd − X | Xqn − X dans Fq[X] et donc Xqd − X est scindé
dans Fqn , d’où Fqn contient son corps de décomposition Fqd .

Exercice 2. Montrer que le polynôme X4 + 1 est réductible dans tous les Fp[X], bien qu’il soit
irréductible dans Z[X]. (Indication : On pourra montrer qu’il admet une racine dans Fp2.)

Proposition 4.4. Soit q une puissance de nombre premier et P ∈ Fq[X]. Si P est irréductible
alors P n’a pas de facteur carré dans Fq[X].

Démonstration. Si P a un facteur carré dans Fq[X], on a P = Q2R avec Q, R ∈ Fq[X]. Alors
Q divise P et P ′ = 2Q′QR + Q2R′ dans Fq[X]. Ainsi, P et P ′ ne sont pas premiers entre
eux dans Fq[X], donc dans Fq[X] par invariance du PGCD par extension de corps. Puisque P
est irréductible, le seul facteur commun possible à P et P ′ est alors P , ce qui implique que
P ′ = 0 pour des raisons de degré. Mais alors d’après le Corollaire 1.5, P = Qp pour un certain
Q ∈ Fq[X], ce qui est absurde par irréductibilité de P .

Remarque 4.5. La propriété de n’avoir pas de facteur carré dans la clôture algébrique est la
séparabilité. Ainsi, tout polynôme irréductible est séparable dans Fq[X]. On dit que Fq est
un corps parfait. En général, un corps est parfait si et seulement s’il est de caractéristique 0
ou de caractéristique p avec Frobenius surjectif. C’est cette dernière propriété qu’on a utilisé
ci-dessus.
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5 Carrés dans Fq

Dans cette section, on s’intéresse aux carrés dans les corps finis. Commençons par remar-
quer que tout élément de F2n est un carré, de manière unique, puisque la fonction carré est
l’automorphisme de Frobenius.

Exercice 3. Prouver directement que tout élément de F2n est un carré de manière unique.

Dans la suite de cette section, on supposera donc q impair.

Proposition 5.1 (Critère d’Euler). Soit q une puissance de nombre premier impair et x ∈ F×
q .

Alors x est un carré dans Fq si et seulement si x
q−1

2 = 1.

Démonstration. L’application f : x 7→ x2 est un endomorphisme du groupe F×
q . Son noyau est

égal à {−1, 1}, car ces deux éléments sont de carré 1 et le polynôme X2 − 1 ne peut avoir
qu’au plus deux racines dans le corps Fq. Ainsi, par le premier théorème d’isomorphisme et le
théorème de Lagrange, l’image de f est d’ordre q−1

2 . Maintenant, si x est un carré, x = y2, alors
x

q−1
2 = yq−1 = 1 par le théorème de Lagrange et réciproquement, puisque le polynôme X

q−1
2 −1

ne peut avoir qu’au plus q−1
2 racines dans le corps Fq, ses racines sont exactement les carrés de

F×
q .

Au passage, on a montré le fait suivant.

Corollaire 5.2. Soit q une puissance de nombre premier impair. Alors Fq possède q+1
2 carrés.

Exercice 4. Donner une autre démonstration de ce résultat en utilisant le fait que F×
q est

cyclique.

Proposition 5.3. Soit q une puissance de nombre premier. Alors −1 est un carré dans Fq si
et seulement si q est pair ou q ≡ 1 mod 4. En particulier, −1 est toujours un carré dans Fq2.

Démonstration. Si q est pair, il est clair que −1 = 12. Sinon, on calcule

(−1)
q−1

2 =
{

1 si q ≡ 1 mod 4
−1 si q ≡ 3 mod 4.

6 Exercices
Exercice 5. Soit p un nombre premier et n ≥ 2. Montrer que (Fpn , +) ≃ ((Fp)n, +) ̸≃
(Z/pnZ, +).

Exercice 6. Donner un isomorphisme entre F3[X]/(X2 + 1) et F3[X]/(X2 + X − 1).

Exercice 7. Chercher les polynômes irréductibles de degré 2, 3, 4, 5 dans F2[X].

Exercice 8. Écrire les tables d’addition et de multiplication de F4. Donner un générateur de
F×

4 .

Exercice 9. Donner deux constructions de F16, comme extension de degré 4 de F2 et comme
extension de degré 2 de F4, et un isomorphisme entre les deux.

Exercice 10. Donner un générateur de F×
11.
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Exercice 11. Soit x ∈ Fq. Montrer que x est un carré dans Fq2.

Exercice 12. Montrer qu’un corps fini ne peut être algébriquement clos.

Exercice 13. Soit q une puissance de nombre premier. Montrer que⋃
n∈N

Fqn!

est une clôture algébrique de Fq.

Exercice 14. Soit q une puissance de nombre premier et P ∈ Fq[X] irréductible de degré n.
Montrer que si α ∈ Fqn [x] est une racine de P dans Fqn, alors αq également. En déduire que P
est scindé dans Fqn.

Exercice 15. Soit q une puissance de nombre premier. Montrer que toute extension finie de
Fq est un corps de rupture sur Fq et est donc monogène. (On peut procéder par maximalité du
degré d’un élément de l’extension ou par cyclicité du groupe multiplicatif d’un corps fini.)

Exercice 16. D’après l’exercice précédent, pour toute puissance de nombre premier q et tout
n ∈ N∗, il existe un élément primitif θ ∈ Fqn tel que Fqn = Fq(θ). En particulier, Fq admet des
polynômes irréductibles de tout degré. On va maintenant les dénombrer.

1. Soit n ∈ N∗. On note Iq(n) = {P ∈ Fq[X] | P irréductible, unitaire, deg P = n} et
πq(n) = #Iq(n). Montrer que pour tout diviseur d de n et tout P ∈ Iq(d), P | Xqn − X
dans Fq[X].

2. Réciproquement, montrer qu’un facteur irréductible unitaire de Xqn − X dans Fq[X] est
dans Iq(d) avec d un diviseur de n.

3. En déduire que qn =
∑
d|n

πq(d).

4. En admettant la formule d’inversion de Möbius 1 donner une formule pour πq(n) en
fonction de q et de n.

5. Montrer que πq(n) ∼
n→+∞

qn

n
et que πq(n) ∼

q→+∞
qn

n

6. Si l’on choisit uniformément un polynôme unitaire dans Fq[X] de degré n, avec n ou q
grand, estimer la probabilité que le polynôme choisi soit irréductible.

Exercice 17. Soit q une puissance de nombre premier et n ∈ N∗. Montrons que A ∈ Mn(Fq)
est diagonalisable si et seulement si Aq = A.

Exercice 18. Soit q une puissance de nombre premier impair. Montrer que tout élément de Fq

est somme de deux carrés. En déduire qu’il n’existe que deux classes d’équivalence de formes
quadratiques non dégénérée sur Fn

q .
1. Si pour tout n ∈ N∗, bn =

∑
d|n ad alors pour tout n ∈ N∗, an =

∑
d|n µ(n/d)bd où

µ(n) =

 1 si n = 1
(−1)r si n = p1 . . . pr avec les pi premiers deux à deux distincts
0 si n a un facteur carré.
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Exercice 19 (Théorème de Chevalley-Warning). Soit q une puissance de nombre premier.
1. Soit d ∈ N. Montrer que ∑

x∈Fq

xd =
{

−1 si m ≥ 1 et q − 1 | d
0 sinon.

2. Soit P1, . . . , Pr ∈ Fq[X1, . . . , Xn] vérifiant
r∑

i=1
deg Pi < n et posons P =

r∏
i=1

(1 − P q−1
i ).

Montrer que la fonction polynomiale associée à P est l’indicatrice de l’ensemble des racines
communes des Pi.

3. Calculer
∑

x∈Fn
q

P (x) de deux manières différentes.

4. En déduire que le nombre de racines communes des Pi est divisible par la caractéristique
p de Fq.

5. Montrer que si P1, . . . , Pr ∈ Fq[X1, . . . , Xn] sont homogènes et vérifient
r∑

i=1
deg Pi < n,

alors ils ont un zéro commun non nul dans Fn
q .

Remarque. Le dernier énoncé signifie géométriquement que les hypersurfaces projectives d’équa-
tions Pi = 0 dans Pn−1(Fq) ont une intersection non vide.
Exercice 20 (Théorème de Wedderburn). Soit K une algèbre à division finie. On va montrer
que K est un corps, c’est-à-dire que K est commutative.

1. Soit Z = {x ∈ K | ∀y ∈ K, xy = yx}. Montrer que Z est un corps fini. En déduire
qu’il existe une puissance de nombre premier q et un entier n ∈ N∗ tels que |Z| = q et
|K| = qn.

2. Faisons agir K× sur lui-même par conjugaison. Pour tout x ∈ K×, montrer que Stab(x)∪
{0} est un sous-corps de K contenant Z.

3. En déduire que, pour tout x ∈ K×, il existe d divisant n tel que |Stab(x)| = qd − 1.

4. En utilisant l’équation aux classes, montrer que Φn(q) | q − 1, où

Φn =
∏

ζ racine primitive n−ième de l’unité
(X − ζ).

(On pourra admettre que Φn(q) est bien un entier.)

5. Établir une absurdité en supposant que n > 1.
Remarque. Wedderburn était écossais, le W se prononce à l’anglaise !
Exercice 21. Soit K un corps de caractéristique p. Déterminer les racines p-ièmes de l’unité
dans K.
Exercice 22. Soit p un nombre premier, K un corps de caractéristique p et a ∈ K. Montrer
que le polynôme Xp−X +a est soit scindé dans K[X], soit irréductible dans K[X]. (Indication :
On pourra montrer que si une extension de K possède une racine de ce polynôme, alors elle les
possède toutes.)
Exercice 23. Soit p un nombre premier et K = Fp(T ). Montrer que le polynôme Xp−T ∈ K[X]
est irréductible mais pas séparable (i.e. il a un facteur multiple dans K).
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