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Corps finis

1 Morphisme de Frobenius

Dans cette section, p est un nombre premier.

Proposition 1.1. Soit A un anneau de caractéristique p. Alors pour tout a,b € A qui com-
mutent, (a +b)P = aP + bP.

Démonstration. 11 suffit de développer le binéme de Newton pour (a + b)? (puisque a et b
commutent) et de montrer que (Z) = 0dans A, pour 1 < k < p—1. Cette derniere égalité vient

du fait que k(i) = p(ij) est divisible par p et d'une application du lemme de Gauss. O

Corollaire 1.2. Soit A un anneau de caractéristique p et n € N. Alors pour tout a,b € A qui
commutent, (a + b)P" = a?" + bP".

Définition 1.3. Soit K un corps de caractéristique p. L’application x — xP est un endomor-
phisme d’anneau de K, appelé le morphisme de Frobenius de K.

Remarque 1.4. Comme tout morphisme de corps, le Frobenius est injectif, mais il n’est
pas surjectif en général. Attention a ne pas immédiatement 'appeler « 'automorphisme de
Frobenius » en caractéristique p. C’est bien un automorphisme dans le cas d’un corps fini.

Corollaire 1.5. Soit K un corps de caractéristique p dans lequel le Frobenius est surjectif et
P e K[X]. Alors P' =0 si et seulement s’il existe QQ € K[X] tel que P = QP.

Démonstration. On a déja vu que P’ = 0 équivaut a ce que P = Q(XP) pour un certain
n n n p

Q € K[X]. En écrivant Q = > ;X" puis a, = b ona P = > X" = (Zkak> . La
k=0 k=0 k=0

réciproque est claire puisque (QP)" = pQ'QP~!. O]

2 Les corps finis Z/pZ

Lemme 2.1. Soitn € N;n > 2 et k € Z/nZ. Les propriétés suivantes sont équivalentes.

1. k est inversible dans Z/nZ.
2. k engendre le groupe (Z/nZ,+).
3. k est premier avec n.

Démonstration. k est inversible dans Z/nZ si et seulement si 1 € (k), si et seulement si k
engendre le groupe Z/nZ. Ensuite, la congruence ku = 1 mod n équivaut a 'existence d'un
v € Z tel que ku + nv = 1, c’est-a-dire a une relation de Bézout entre k et n, et donc leur
coprimalité. O



Corollaire 2.2. Soit n € N,n > 2. Les propriétés suivantes sont équivalentes :

1. n est premaer.
2. Z/nZ est un corps.

3. Z/nZ est un anneau intégre.

Démonstration. Si n est premier alors tout élément non nul de Z/nZ est la classe d'un entier
non divisible par n, donc premier avec n. D’apres le Lemme précédent, ces classes sont toutes
inversibles, donc 1. = 2. 2. = 3. est clair. Si n n’est pas premier, on an = ab avec 1 < a,b <n
et donc @, b # 0, mais @b = 0 et donc, par contraposée, 3. = 1. O

Définition 2.3. Soit p un nombre premier. On note F, le corps Z/pZ.

Conséquences de la structure de corps de Z/pZ : Petit théoréeme de Fermat, critere
d’irréductibilité par réduction dans Z[X] facile a vérifier (application a l'irréductibilité des
polynémes cyclotomiques), structure particuliere des carrés (critere d’Euler, loi de réciprocité
quadratique), application aux équations diophantiennes (voir feuille suivante)...

3 Construction des corps finis

Proposition 3.1. Soit K un corps fini. Il existe un nombre premier p et n € N* tels que
| K| = p".

Démonstration. K étant integre, sa caractéristique est 0 ou un nombre premier. Mais si sa
caractéristique était 0, K contiendrait un sous-anneau isomorphe a Z, ce qui est impossible
puisque K est fini. Soit donc p la caractéristique de K. Le sous-anneau de K engendré par 1
est alors isomorphe a F,. K étant fini, il est un F-espace vectoriel de dimension finie n > 1. Si
(é1,...,e,) est une base de K, I'application

(X1, .., Tp) > Zxkek
k=1
est une bijection de (F,)" dans K et donc | K| = p". O

Nous allons maintenant montrer la réciproque de la proposition précédente.

Proposition 3.2. Soit p un nombre premier et n € N*. Si un corps fini K a pour cardinal p”,
alors K est un corps de décomposition de X?" — X € F,[X].

Démonstration. 11 est clair que 0 est racine de X?" — X. De plus, K* est d’ordre p” — 1 et donc,
d’apres le théoréme de Lagrange, pour tout z € K*, 27" ~! = 1 et donc 2" = z. Ainsi, X?" — X
est scindé dans K et ses racines sont exactement les éléments de K. En particulier, K = F,(K)
et donc K est un corps de décomposition de X*" — X sur F,. O

Théoréme 3.3. Soit p un nombre premier et n € N*. Alors il existe un corps fini de cardinal
p". De plus, celui-ci est unique a isomorphisme pres.

Démonstration. Considérons le corps de décomposition K de XP" — X sur F,. Alors les p”
éléments de K qui sont les racines de X?" — X forment un sous-corps I de K, ce que I'on voit
en utilisant 'automorphisme de Frobenius. Comme K est engendré par F', on a donc K = F
et |K| = p™. L'unicité vient de la Proposition 3.2 et du fait qu'un corps de décomposition est
unique a isomorphisme pres. O



Définition 3.4. Soit ¢ une puissance de nombre premier. On note I, le corps fini a q éléments.

Remarque 3.5. /N Quand g = p™ est une puissance d’'un nombre premier, avec n > 2, le
corps F,» n’a pas grand-chose a voir avec Z/p"Z ou (F,)"! Ces derniers ne sont méme pas
integres.

Exemple 3.6. Le polynome X? + X + 1 est irréductible dans Fo[X] car il est de degré 2 et
sans racine, et donc on peut construire Fy comme étant Fy[X]/(X? + X + 1).

4 Propriétés des corps finis

Proposition 4.1. Soit ¢ une puissance de nombre premier. Alors (qu, X) est un groupe cy-
clique.

Démonstration. C’est un résultat vu en théorie des groupes : tout sous-groupe fini du groupe
multiplicatif d'un corps est cyclique. O

Proposition 4.2. Soit ¢ une puissance de nombre premier et K un corps contenant IF,. Alors
pour tout x € K, x € F, si et seulement si 29 = x.

Démonstration. Par construction des corps finis comme corps de décomposition. O]
Exercice 1. Montrer que si d | n alors X9 — X | X9 — X dans Z[X].

Proposition 4.3. Soit ¢ une puissance de nombre premier et d,n € N. Alors Fyn est une
extension de corps de Fya si et seulement si d | n.

Démonstration. Si Fgn /Fa est une extension de corps, alors la multiplicativité des degrés donne
que [Fya : Fo] | [Fgn : Fyl, c’est-a-dire d | n.

Réciproquement, si d | n, alors X X | X9" — X dans F,[X] et donc X ¢ _ X est scindé
dans Fn, d’ou Fgn contient son corps de décomposition Fa. O

Exercice 2. Montrer que le polynome X*+ 1 est réductible dans tous les F,[X], bien qu’il soit
irréductible dans Z[X]. (Indication : On pourra montrer qu’il admet une racine dans F.)

Proposition 4.4. Soit ¢ une puissance de nombre premier et P € F,[X]. Si P est irréductible
alors P n’a pas de facteur carré dans F,[X].

Démonstration. Si P a un facteur carré dans F, [X], on a P = Q*R avec Q, R € F [X]. Alors
Q divise P et P = 2Q'QR + Q*R’ dans F,[X]. Ainsi, P et P’ ne sont pas premiers entre
eux dans F,[X], donc dans F,[X] par invariance du PGCD par extension de corps. Puisque P
est irréductible, le seul facteur commun possible & P et P’ est alors P, ce qui implique que
P’ = 0 pour des raisons de degré. Mais alors d’apres le Corollaire 1.5, P = QP pour un certain
Q € F,[X], ce qui est absurde par irréductibilité de P. ]

Remarque 4.5. La propriété de n’avoir pas de facteur carré dans la cldture algébrique est la
séparabilité. Ainsi, tout polynéme irréductible est séparable dans F,[X]. On dit que F, est
un corps parfait. En général, un corps est parfait si et seulement s’il est de caractéristique 0
ou de caractéristique p avec Frobenius surjectif. C’est cette derniere propriété qu’on a utilisé
ci-dessus.



5 Carrés dans [,

Dans cette section, on s’intéresse aux carrés dans les corps finis. Commencons par remar-
quer que tout élément de Fon est un carré, de maniére unique, puisque la fonction carré est
I’automorphisme de Frobenius.

Exercice 3. Prouver directement que tout élément de Fon est un carré de maniére unique.
Dans la suite de cette section, on supposera donc ¢ impair.

Proposition 5.1 (Critére d’Euler). Soit ¢ une puissance de nombre premier impair et v € F,¢.

, . .oog—1
Alors x est un carré dans F, si et seulement si ™z = 1.

Démonstration. L’application f : x — 22 est un endomorphisme du groupe ;. Son noyau est
égal & {—1,1}, car ces deux éléments sont de carré 1 et le polynome X? — 1 ne peut avoir
qu’au plus deux racines dans le corps F,. Ainsi, par le premier théoreme d’isomorphisme et le
théoreme de Lagrange, I'image de f est d’ordre %. Maintenant, si x est un carré, x = y2, alors
7 = y?~! =1 par le théoréme de Lagrange et réciproquement, puisque le polynéme X el |
ne peut avoir qu’au plus ‘%1 racines dans le corps [y, ses racines sont exactement les carrés de
Fx. O
Au passage, on a montré le fait suivant.

Corollaire 5.2. Soit ¢ une puissance de nombre premier impair. Alors F, posséde %1 Carres.

Exercice 4. Donner une autre démonstration de ce résultat en utilisant le fait que Fy est
cyclique.

Proposition 5.3. Soit ¢ une puissance de nombre premier. Alors —1 est un carré dans Fy si
et seulement si q est pair ou ¢ =1 mod 4. En particulier, —1 est toujours un carré dans .

Démonstration. Si q est pair, il est clair que —1 = 1%. Sinon, on calcule

g—1 1sig=1mod4
—1si ¢ =3 mod 4.

6 Exercices

Exercice 5. Soit p un nombre premier et n > 2. Montrer que (Fpn,+) ~ ((F,)", +) #
(Z/p"Z.+).

Exercice 6. Donner un isomorphisme entre F3[X]/(X? + 1) et F3[X]/(X*+ X —1).
Exercice 7. Chercher les polynomes irréductibles de degré 2,3,4,5 dans Fy[X].

Exercice 8. Ecrire les tables d’addition et de multiplication de Fy. Donner un générateur de
Fy.

Exercice 9. Donner deux constructions de Fi5, comme extension de degré 4 de Fy et comme
extension de degré 2 de Fy, et un isomorphisme entre les deuz.

Exercice 10. Donner un générateur de Fy.



Exercice 11. Soit x € F,. Montrer que x est un carré dans Fg.
Exercice 12. Montrer qu’un corps fini ne peut étre algébriquement clos.

Exercice 13. Soit ¢ une puissance de nombre premier. Montrer que

U F,.

neN
est une cloture algébrique de .

Exercice 14. Soit g une puissance de nombre premier et P € F [ X] irréductible de degré n.
Montrer que si o € Fyn[x] est une racine de P dans Fyn, alors o également. En déduire que P
est scindé dans Fyn.

Exercice 15. Soit ¢ une puissance de nombre premier. Montrer que toute extension finie de
[F, est un corps de rupture sur F, et est donc monogéne. (On peut procéder par maximalité du
degré d’un élément de l'extension ou par cyclicité du groupe multiplicatif d’un corps fini.)

Exercice 16. D’aprés l’exercice précédent, pour toute puissance de nombre premier q et tout
n € N*, il existe un élément primitif 0 € F,n tel que Fyn = Fy(0). En particulier, F, admet des
polynomes irréductibles de tout degré. On va maintenant les dénombrer.

1. Soit n € N*. On note I,(n) = {P € F,X] | P irréductible, unitaire,deg P = n} et
m,(n) = #I,(n). Montrer que pour tout diviseur d de n et tout P € I,(d), P | X9 — X
dans F[X].

2. Réciproquement, montrer qu’un facteur irréductible unitaire de X7 — X dans F,[X] est
dans I,(d) avec d un diviseur de n.

3. En déduire que ¢" = _ m,(d).

din

4. En admettant la formule d’inversion de Mobius® donner une formule pour m,(n) en
fonction de q et de n.
~ ~
5. Montrer que m,(n) Lo et que m,(n) et
6. Si l'on choisit uniformément un polynome unitaire dans F,[X]| de degré n, avec n ou q
grand, estimer la probabilité que le polynome choisi soit irréductible.

Exercice 17. Soit ¢ une puissance de nombre premier et n € N*. Montrons que A € M, (F,)
est diagonalisable si et seulement si A1 = A.

Exercice 18. Soit ¢ une puissance de nombre premier impair. Montrer que tout élément de IF,
est somme de deux carrés. En déduire qu’il n’existe que deux classes d’équivalence de formes
quadratiques non dégénérée sur Fy.

1. Si pour tout n € N*, b,, = Zd|n ag alors pour tout n € N*, q,, = Zd|n w(n/d)bg on

lsin=1
wu(n) = (=1)" si n =p;...p, avec les p; premiers deux & deux distincts
0 si n a un facteur carré.



Exercice 19 (Théoréeme de Chevalley-Warning). Soit ¢ une puissance de nombre premier.

1. Soit d € N. Montrer que

Zxd:{_l sim>1letq—1|d
0 sinon.

z€ely

2. Soit Py,..., P, € Fo[X1,...,X,] vérifiant Y deg P; < n et posons P = [[(1 — P,
=1 =1
Montrer que la fonction polynomiale associée a P est l'indicatrice de [’ensemble des racines
communes des P;.

3. Calculer Y P(z) de deuz maniéres différentes.

zeFy

4. En déduire que le nombre de racines communes des P; est divisible par la caractéristique
p de F,.

5. Montrer que si Py,...,P. € F,[Xq,...,X,] sont homogénes et vérifient ZdegPi < n,
i=1
alors ils ont un zéro commun non nul dans Fy.

Remarque. Le dernier énoncé signifie géométriquement que les hypersurfaces projectives d’équa-
tions P, = 0 dans P"~!(F,) ont une intersection non vide.

Exercice 20 (Théoreme de Wedderburn). Soit K une algébre da division finie. On va montrer
que K est un corps, c’est-a-dire que K est commutative.

1. Soit Z = {x € K | Vy € K,xy = yx}. Montrer que Z est un corps fini. En déduire
qu’il existe une puissance de nombre premier q et un entier n € N* tels que |Z| = q et
K| =q".

2. Faisons agir K* sur lui-méme par conjugaison. Pour tout x € K*, montrer que Stab(z)U
{0} est un sous-corps de K contenant Z.

3. En déduire que, pour tout x € K>, il existe d divisant n tel que |Stab(z)| = ¢* — 1.

4. En utilisant I’équation aux classes, montrer que ®,(q) | ¢ — 1, ot
o, = H (X = Q).
¢ racine primitive n—iéme de l'unité
(On pourra admettre que ®,,(q) est bien un entier.)
5. Etablir une absurdité en supposant que n > 1.
Remarque. Wedderburn était écossais, le W se prononce a l'anglaise !

Exercice 21. Soit K un corps de caractéristique p. Déterminer les racines p-iémes de ['unité
dans K.

Exercice 22. Soit p un nombre premier, K un corps de caractéristique p et a € K. Montrer
que le polynome XP— X +a est soit scindé dans K[X], soit irréductible dans K[X]|. (Indication :
On pourra montrer que si une extension de K posséde une racine de ce polynome, alors elle les
posséde toutes.)

Exercice 23. Soit p un nombre premier et K = F,(T'). Montrer que le polynome X*—T € K[X]
est irréductible mais pas séparable (i.e. il a un facteur multiple dans K ).



