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Théorie des corps

1 Extensions de corps
Exercice 1. Soit K et L des corps et f : K → L un morphisme d’anneaux. Montrer que f est
injectif.
Définition 1.1. Soit K et L des corps. On dit que L est une extension de corps de K
lorsqu’il existe un morphisme d’anneaux f : K → L. On note alors que L/K est une extension
de corps.
Remarque 1.2. D’après l’exercice précédent, cela revient à supposer que K est inclus dans
L.

Si L/K est une extension de corps, alors L est une K-algèbre, en particulier un K-espace
vectoriel, ce qui justifie la définition suivante.
Définition 1.3. On dit que l’extension de corps L/K est finie lorsque L est de dimension
finie en tant qu’espace vectoriel. On appelle alors degré, et on note [L : K], cette dimension.
Dans le cas contraire, on dit que l’extension est de degré infini.
Exemple 1.4.

1. K/K est de degré 1 pour n’importe quel corps.

2. C/R est de degré 2.
Exercice 2. Montrer que R/Q est de degré infini.
Théorème 1.5 (de la base télescopique). Soit L/K et M/L des extensions de corps. Si (ei)i∈I

est une K-base de L et (fj)j∈J est une L-base de M , alors (eifj)i∈I,j∈J est une K-base de M .
En particulier, si L/K et M/L sont des extensions finies, alors M/K aussi et

[M : K] = [M : L][L : K].
Exercice 3. Soit L/K une extension finie. Montrer qu’il existe n ∈ N, α1, . . . , αn ∈ L tels que
L = K(α1, . . . , αn).
Proposition 1.6. Soit L/K une extension de corps et P, Q ∈ K[X] avec Q ̸= 0. Alors la
division euclidienne de P par Q dans L[X] est la même que celle dans K[X].
Démonstration. La division euclidienne de P par Q nécessite seulement de faire des opérations
dans le sous-corps de K engendré par leurs coefficients, qui est également un sous-corps de
L.
Corollaire 1.7. Soit L/K une extension de corps et P, Q ∈ K[X] non tous les deux nuls. Alors
le PGCD de P et Q dans L[X] est le même que celui dans K[X] (« Le PGCD est invariant
par extension de corps »).
Démonstration. Le PGCD peut être obtenu en appliquant l’algorithme d’Euclide, qui consiste
à faire des divisions euclidiennes successives.
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2 Éléments algébriques
Définition 2.1. Soit L/K une extension de corps. Un élément α ∈ L est dit algébrique sur
K lorsqu’il existe P ∈ K[X] \ {0} tel que P (α) = 0. Un élément de L qui n’est pas algébrique
sur K est dit transcendant sur K. On dit que L/K est algébrique lorsque tous les éléments
de L sont algébriques sur K.

Exemple 2.2. i est algébrique sur R et sur C. π est algébrique sur R mais transcendant sur
Q (pas facile).

Proposition 2.3. Soit L/K une extension de corps et α ∈ L algébrique sur K. Il existe
un unique polynôme unitaire mα ∈ K[X], appelé polynôme minimal de α sur K, tel que
{P ∈ K[X] | P (α) = 0} = (mα). De plus, mα est irréductible dans K[X].

Démonstration. L’ensemble I = {P ∈ K[X] | P (α) = 0} est un idéal de K[X] (c’est le noyau
du morphisme d’évaluation en α), non trivial car α est algébrique sur K, et puisque K[X] est
principal (car euclidien), il est engendré par un polynôme non nul P et ses associés, dont un
seul est unitaire. L’un des facteurs irréductibles de mα est dans I par intégrité de K et est donc
divisible par mα, ce qui veut dire que mα est irréductible dans K[X].

Remarque 2.4. mα est aussi le polynôme unitaire de plus petit degré dans K[X] s’annulant
en α.

Exercice 4. Soit L/K et M/L des extensions de corps et α ∈ M algébrique sur K. Montrer
que α est algébrique sur L et donner un lien entre ses polynômes minimaux sur K et sur L
respectivement.

Exercice 5. Déterminer les polynômes minimaux de i,
√

2,
√

2 +
√

2,
√

3 + 2
√

2 sur Q,R et
C.

Proposition 2.5. Soit L/K une extension de corps et α ∈ L. Les propriétés suivantes sont
équivalentes :

1. α est algébrique sur K.

2. K[α] est un K-espace vectoriel de dimension finie.

3. K[α] = K(α).

4. La famille (αn)n∈N est liée sur K.

Démonstration.

1. ⇒ 2. Par définition, K[α] est l’image de K[X] par le morphisme d’évaluation en α. Le premier
théorème d’isomorphisme (pour les espaces vectoriels !) donne donc K[α] ≃ K[X]/(mα).
Notons d le degré de mα. Alors (1, X, . . . , X

d−1) est une base de K[X]/(mα). Le caractère
générateur se voit par division euclidienne et le caractère libre se voit par minimalité du
degré de mα. En particulier, K[α] est de dimension finie.

2. ⇒ 3. K[α] est une K-algèbre intègre de dimension finie, donc est un corps (l’endomorphisme
de multiplication par x ̸= 0 est injectif, donc surjectif), et c’est clairement le plus petit
corps contenant K et α, c’est-à-dire K(α).
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3. ⇒ 4. α est inversible dans le corps K(α) = K[α] donc il existe Q ∈ K[X] tel que αQ(α)−1 = 0,
ce qui constitue une relation de dépendance linéaire non triviale entre les puissances de
α.

4. ⇒ 1. Une relation de dépendance linéaire non triviale entre les puissances de α donne une
égalité de la forme P (α) = 0 avec P ∈ K[X] \ {0}.

Remarque 2.6. On a vu dans la démonstration que le degré de K[α] sur K est exactement
le degré du polynôme minimal mα, aussi appelé le degré de α.

Corollaire 2.7. Soit L/K une extension de corps. L’ensemble des éléments de L algébriques
sur K est une extension algébrique de K.

Démonstration. Pour montrer qu’il s’agit d’un anneau, il suffit de voir que α+β, αβ ∈ K(α)(β)
qui est de dimension finie sur K par le théorème de la base télescopique. Enfin si α ∈ L est
algébrique non nul, alors K[1/α] ⊂ K(α) = K[α] est aussi de dimension finie sur K.

Exercice 6. Montrer qu’une extension finie est algébrique. Montrer que la réciproque est fausse.

3 Corps de rupture et de décomposition
Définition 3.1. Soit K un corps et P ∈ K[X] irréductible. On dit qu’une extension de corps
L/K est un corps de rupture de P sur K lorsque P admet une racine α ∈ L et que L = K(α).

Remarque 3.2. !△ On ne parlera de corps de rupture que pour des polynômes irréductibles !

Exemple 3.3. C est un corps de rupture de X2 + 1 sur R.

Proposition 3.4. Soit K un corps et P ∈ K[X] irréductible. Alors il existe un corps de rupture
de P sur K. De plus, un tel corps est unique à isomorphisme près.

Démonstration. Considérons l’anneau-quotient K[X]/(P ). Comme P est irréductible et K[X]
principal, l’idéal (P ) est maximal, et K[X]/(P ) est donc un corps L. De plus, X est une racine

de P dans L, puisque si P =
n∑

k=0
akXk alors

P (X) =
n∑

k=0
akX

k =
n∑

k=0
akXk = P = 0.

Enfin, il est clair que L = K(X) par double inclusion.
Pour l’unicité, si K(α) est un corps de rupture de P sur K, alors il existe un morphisme de

K[X] dans K(α) envoyant X sur α (par propriété universelle de l’anneau des polynômes) et
ce morphisme se factorise par un morphisme de K[X]/(P ) dans K(α) envoyant X sur α (par
propriété universelle du quotient). On vérifie alors immédiatement que ce morphisme est un
isomorphisme.

Théorème 3.5 (de l’élément primitif). Soit K un corps de caractéristique 0 et L/K une
extension finie. Alors il existe θ ∈ L tel que L = K(θ).
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Remarque 3.6. Autrement dit, en caractéristique 0, toute extension finie est un corps de
rupture. C’est également le cas pour les corps parfait (c’en est même une caractérisation),
c’est-à-dire de caractéristique 0 ou de caractéristique p > 0 avec Frobenius surjectif.
Définition 3.7. Soit K un corps et P ∈ K[X]. On dit que P est scindé lorsqu’il peut s’écrire
comme produit de polynômes de degré 1. Une extension de corps L/K est un corps de décom-
position de P sur K lorsque P est scindé dans L[X] et L = K(α1, . . . , αn), où α1, . . . , αn ∈ L
sont les racines de P dans L.
Proposition 3.8. Soit K un corps et P ∈ K[X]. Alors il existe un corps de décomposition de
P sur K. De plus, un tel corps est unique à isomorphisme près.
Démonstration. On raisonne par récurrence sur le degré de P . Si deg P = 1, alors K est un
corps de décomposition de P . Sinon, factorisons P comme produit d’irréductibles

P =
r∏

i=1
P mi

i

dans l’anneau factoriel K[X]. Considérons un corps de rupture L de P1 sur K. Alors L = K(α)
avec α une racine de P1. Par hypothèse de récurrence, il existe une extension M/L telle que
P/P m1

1 est scindé dans M et M = L(α1, . . . , αn) où α1, . . . , αn sont les racines de P/P m1
1 dans

M . Alors P est scindé dans M et on a M = K(α, α1, . . . , αn) et ces dernières sont les racines
de P dans M . L’unicité est fastidieuse, elle consiste à montrer qu’on peut toujours prolonger
un isomorphisme de corps à chaque étape de la récurrence.
Remarque 3.9. !△ Le corps de rupture d’un polynôme irréductible n’est pas toujours son
corps de décomposition. Par exemple, le corps de rupture de X3 − 2 sur Q est une extension
de degré 3 alors que son corps de décomposition est de degré 6 sur Q.
Exercice 7. Soit K un corps et P ∈ K[X] de degré n ≥ 1. Montrer que le corps de décompo-
sition de P sur K est de degré au plus n! sur K.
Définition 3.10. On dit qu’un corps K est algébriquement clos lorsqu’il n’admet pas d’autre
extension algébrique que lui-même.
Exercice 8. Montrer que les propriétés suivantes sont équivalentes :

1. K est algébriquement clos.

2. Tout polynôme non constant dans K[X] est scindé dans K[X].

3. Tout polynôme non constant dans K[X] admet une racine dans K.

4. Les polynômes irréductibles de K[X] sont les polynômes de degré 1.
Exemple 3.11. C est algébriquement clos (Théorème de d’Alembert-Gauss ou « Théorème
fondamental de l’algèbre »).
Définition 3.12. Soit L/K une extension de corps. On dit que L est un clôture algébrique
de K lorsque L/K est algébrique et L est un corps algébriquement clos.
Théorème 3.13 (Steinitz). Tout corps admet une clôture algébrique. De plus, celle-ci est
unique à isomorphisme près.
Remarque 3.14. Encore une fois, ce résultat fait appel à l’axiome du choix, donc est non
constructif.
Définition 3.15. La clôture algébrique de K est notée K.
Exercice 9. Est-ce que Q = C ?
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4 Exercices
Exercice 10. Après avoir montré qu’ils sont irréductibles dans Q[X], déterminer les corps de
rupture et de décomposition des polynômes

X2 + 1, X2 − 2, X3 − 2, X4 + 1.

Exercice 11. En utilisant le fait que C est algébriquement clos, déterminer les polynômes
irréductibles de R[X].

Exercice 12. Soit L/K une extension finie de degré p premier. Montrer qu’il n’existe aucune
sous-extension F telle que K ⊊ F ⊊ L.

Exercice 13. Soit K un corps et P ∈ K[X] de degré n. Montrer que P est irréductible dans
K[X] si et seulement s’il n’existe aucune extension L/K avec [L : K] ≤ n/2 dans laquelle P
admet une racine.

Exercice 14. Montrer que Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Exercice 15. Un corps de rupture est-il unique à unique isomorphisme près ?

Exercice 16. Montrer que Q est dénombrable.

Exercice 17. Soit L/K une extension de corps et M ∈ Mn(K). Montrer que le rang de M ,
vue comme matrice dans Mn(L), est égal au rang de M , vue comme matrice dans Mn(K).
Faire de même avec le polynôme caractéristique et le polynôme minimal.

Remarque. Deux matrices de Mn(K) semblables dans Mn(L) le sont dans Mn(K). Pour le
voir, on peut le montrer pour les matrices compagnons et invoquer la réduction de Frobenius.

Exercice 18. Soit L/K une extension finie. Pour α ∈ L, notons NL/K(α) le déterminant de
l’application K-linéaire x 7→ αx.

1. Montrer que pour tout α ∈ L, NL/K(α) ∈ K et que pour tout α, β ∈ L, NL/K(αβ) =
NL/K(α)NL/K(β).

2. Déterminer NL/K lorsque K = R et L = C.

3. Déterminer NL/K lorsque K = Q et L = Q(
√

d) avec d ∈ Z (on note
√

d = i
√

|d| lorsque
d < 0).

4. Supposons que L = K(α). Déterminer NL/K(α).

Exercice 19. Montrer que si K est un corps fini et L/K est une extension finie, alors il existe
θ ∈ L tel que L = K(θ).

Exercice 20. Soit P ∈ C[X] unitaire et non constant. Nous allons montrer que P admet une
racine dans C.

1. Montrer que l’on peut supposer que P est à coefficient réels.

2. On note d = 2nq, avec n, q ∈ N et q impair, le degré de P . On va montrer le résultat par
récurrence sur l’exposant n : Justifier le cas n = 0.

5



3. Supposons n ∈ N∗ et le fait que tout polynôme réel de degré 2kq′ avec k < n et q′ impair
admet une racine dans C. Soit K le corps de décomposition de P sur C et écrivons

P =
d∏

i=1
(X − αi)

dans K[X]. Pour x ∈ R et 1 ≤ i ≤ j ≤ d, posons βi,j(x) = αi + αj + xαiαj et

Qx =
∏

1≤i≤j≤d

(X − βi,j(x)).

Justifier que, pour tout x ∈ R, Qx ∈ R[X].

4. Montrer que, pour tout x ∈ R, Qx admet une racine dans C.

5. En déduire qu’il existe i ≤ j tels que αi + αj ∈ C et αiαj ∈ C.

6. Conclure que αi, αj ∈ C.

Remarque. Le corps R a la propriété particulière que tout polynôme de degré impair y admet
une racine, à cause du théorème des valeurs intermédiaires. Cette propriété est en fait équiva-
lente au fait que R est un corps réel clos, c’est-à-dire que sa clôture algébrique est de degré 2
sur R. Ainsi, il est impossible de démontrer le théorème de d’Alembert-Gauss « sans analyse ».

Exercice 21. Soit L/K une extension finie et Ω/K une extension, avec Ω algébriquement clos
(on ne dit pas que Ω est une clôture algébrique de K !).

1. Montrer qu’il existe un corps intermédiaire K ⊂ F ⊂ L et un morphisme de corps
f : F → Ω maximal pour la relation (F, f) ≼ (F ′, f ′) définie par F ⊂ F ′ et f ′

|F = f .

2. Montrer que F = L. En déduire que toute extension finie de K se plonge dans Ω.
Remarque. C’est en fait vrai pour tout extension algébrique, mais on a besoin du lemme
de Zorn. C’est comme cela que l’on montre l’unicité de la clôture algébrique d’un corps.

3. Supposons maintenant que L = K(α) est le corps de rupture du polynôme irréductible
P ∈ K[X], avec P (α) = 0 (c’est par exemple le cas si K est de caractéristique 0 ou est
fini). Montrer que les morphismes de corps de L dans Ω correspondent aux racines de P
dans Ω.

4. En déduire que si P est scindé dans L, alors l’ensemble des morphismes de corps de L
dans Ω est un groupe fini d’ordre au plus [L : K]. À quelle condition est-il d’ordre [L : K] ?

Remarque. Sous les bonnes hypothèses (extension normale — P scindé — et séparable — P
n’a que des racines simples), on a donc montré que le groupe de Galois G de L/K est d’ordre
[L : K]. La correspondance de Galois donne une bijection décroissante entre les extensions
intermédiaires L/K/F et les sous-groupes de G. La correspondance va plus loin puisqu’elle
identifie les extensions intermédiaires telles que F/K est galoisienne aux sous-groupes distingués
de G !
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