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Théorie des corps

1 Extensions de corps

Exercice 1. Soit K et L des corps et f : K — L un morphisme d’anneauz. Montrer que f est
injectif.
Définition 1.1. Soit K et L des corps. On dit que L est une extension de corps de K

lorsqu’il existe un morphisme d’anneaux f: K — L. On note alors que L/ K est une extension
de corps.

Remarque 1.2. D’apres 'exercice précédent, cela revient a supposer que K est inclus dans
L.

Si L/K est une extension de corps, alors L est une K-algebre, en particulier un K-espace
vectoriel, ce qui justifie la définition suivante.

Définition 1.3. On dit que [’extension de corps L/K est finie lorsque L est de dimension
finie en tant qu’espace vectoriel. On appelle alors degré, et on note [L : K|, cette dimension.
Dans le cas contraire, on dit que l’extension est de degré infini.

Exemple 1.4.
1. K/K est de degré 1 pour n'importe quel corps.

2. C/R est de degré 2.
Exercice 2. Montrer que R/Q est de degré infini.

Théoréme 1.5 (de la base télescopique). Soit L/K et M/L des extensions de corps. Si (€;)ier
est une K-base de L et (f;)jcs est une L-base de M, alors (e;f;)icr jes est une K-base de M.
En particulier, si L/ K et M/L sont des extensions finies, alors M /K aussi et

M : K|=[M: L|[L:K].
Exercice 3. Soit L/K une extension finie. Montrer qu’il existe n € N, ay, ..., € L tels que
L=K(ay,...,ap).
Proposition 1.6. Soit L/K wune extension de corps et P,Q € K[X]| avec Q # 0. Alors la
division euclidienne de P par Q) dans L[X] est la méme que celle dans K[X].

Démonstration. La division euclidienne de P par () nécessite seulement de faire des opérations
dans le sous-corps de K engendré par leurs coefficients, qui est également un sous-corps de
L. m

Corollaire 1.7. Soit L/K une extension de corps et P,Q € K[X] non tous les deuz nuls. Alors
le PGCD de P et QQ dans L|X] est le méme que celui dans K[X]| (« Le PGCD est invariant
par extension de corps »).

Démonstration. Le PGCD peut étre obtenu en appliquant ’algorithme d’Euclide, qui consiste
a faire des divisions euclidiennes successives. O]



2 Eléments algébriques

Définition 2.1. Soit L/K une extension de corps. Un élément a € L est dit algébrique sur
K lorsqu’il existe P € K[X]\ {0} tel que P(a) = 0. Un élément de L qui n'est pas algébrique
sur K est dit transcendant sur K. On dit que L/ K est algébrique lorsque tous les éléments
de L sont algébriques sur K.

Exemple 2.2. i est algébrique sur R et sur C. 7 est algébrique sur R mais transcendant sur
Q (pas facile).

Proposition 2.3. Soit L/K une extension de corps et o € L algébrique sur K. Il existe
un unique polynome unitaire m, € K[X], appelé polynéme minimal de o sur K, tel que
{P € K|X]| P(a) =0} = (my). De plus, my, est irréductible dans K|[X].

Démonstration. L’ensemble [ = {P € K[X] | P(a) = 0} est un idéal de K[X]| (c’est le noyau
du morphisme d’évaluation en «), non trivial car « est algébrique sur K, et puisque K[X] est
principal (car euclidien), il est engendré par un polyndéme non nul P et ses associés, dont un
seul est unitaire. L'un des facteurs irréductibles de m,, est dans I par intégrité de K et est donc
divisible par m,, ce qui veut dire que m,, est irréductible dans K[X]. O

Remarque 2.4. m, est aussi le polynéme unitaire de plus petit degré dans K[X] s’annulant
en a.

Exercice 4. Soit L/K et M/L des extensions de corps et a € M algébrique sur K. Montrer
que « est algébrique sur L et donner un lien entre ses polynomes minimaux sur K et sur L
respectivement.

Exercice 5. Déterminer les polynémes minimauz de i, \/2, \/2 +2, \/3 +2v/2 sur Q,R et
C.

Proposition 2.5. Soit L/K une extension de corps et a € L. Les propriétés suivantes sont
équivalentes :

1. « est algébrique sur K.
2. Kla] est un K-espace vectoriel de dimension finie.
3. Kla] = K(«).
4. La famille (a™)pen est lice sur K.
Démonstration.

1. = 2. Par définition, K|o] est 'image de K[X] par le morphisme d’évaluation en «. Le premier
théoreme d’isomorphisme (pour les espaces vectoriels!) donne done K[a] ~ K[X]/(m,).
Notons d le degré de mq. Alors (I, X, ..., X ') est une base de K[X]/(m.). Le caractére
générateur se voit par division euclidienne et le caractere libre se voit par minimalité du

degré de m,,. En particulier, K[o] est de dimension finie.

2. = 3. K[a] est une K-algebre intégre de dimension finie, donc est un corps (I’endomorphisme
de multiplication par x # 0 est injectif, donc surjectif), et c’est clairement le plus petit
corps contenant K et «, c’est-a-dire K («).



3. = 4. «a est inversible dans le corps K (a) = K[a] donc il existe @ € K[X] tel que aQ(a)—1 =0,
ce qui constitue une relation de dépendance linéaire non triviale entre les puissances de
a.

4. = 1. Une relation de dépendance linéaire non triviale entre les puissances de a donne une
égalité de la forme P(a) =0 avec P € K[X]\ {0}.

[]

Remarque 2.6. On a vu dans la démonstration que le degré de K[a] sur K est exactement
le degré du polynéme minimal m,,, aussi appelé le degré de a.

Corollaire 2.7. Soit L/K une extension de corps. L’ensemble des éléments de L algébriques
sur K est une extension algébrique de K.

Démonstration. Pour montrer qu’il s’agit d’un anneau, il suffit de voir que a+ 3, a8 € K(«a)(p)
qui est de dimension finie sur K par le théoreme de la base télescopique. Enfin si o« € L est
algébrique non nul, alors K[1/a] C K(a) = K|a] est aussi de dimension finie sur K. O

Exercice 6. Montrer qu’une extension finie est algébrique. Montrer que la réciproque est fausse.

3 Corps de rupture et de décomposition

Définition 3.1. Soit K un corps et P € K[X] irréductible. On dit qu’une extension de corps
L/K est un corps de rupture de P sur K lorsque P admet une racine o € L et que L = K(«).

Remarque 3.2. /N On ne parlera de corps de rupture que pour des polynomes irréductibles!
Exemple 3.3. C est un corps de rupture de X2 + 1 sur R.

Proposition 3.4. Soit K un corps et P € K|[X| irréductible. Alors il existe un corps de rupture
de P sur K. De plus, un tel corps est unique a isomorphisme pres.

Démonstration. Considérons ’anneau-quotient K[X]/(P). Comme P est irréductible et K[X]
principal, I'idéal (P) est maximal, et K[X]/(P) est donc un corps L. De plus, X est une racine

de P dans L, puisque si P = Z a, X" alors
k=0

PX) = axX = apXk =P =0.
k=0 k=0
Enfin, il est clair que L = K(X) par double inclusion.
Pour 'unicité, si K («) est un corps de rupture de P sur K, alors il existe un morphisme de
K[X] dans K(«) envoyant X sur a (par propriété universelle de I'anneau des polyndmes) et
ce morphisme se factorise par un morphisme de K[X]/(P) dans K(«a) envoyant X sur « (par

propriété universelle du quotient). On vérifie alors immédiatement que ce morphisme est un
isomorphisme. O

Théoréme 3.5 (de 'élément primitif). Soit K un corps de caractéristique 0 et L/K une
extension finie. Alors il existe 6 € L tel que L = K(6).



Remarque 3.6. Autrement dit, en caractéristique 0, toute extension finie est un corps de
rupture. C’est également le cas pour les corps parfait (c’en est méme une caractérisation),
c’est-a-dire de caractéristique 0 ou de caractéristique p > 0 avec Frobenius surjectif.

Définition 3.7. Soit K un corps et P € K[X]. On dit que P est scindé lorsqu’il peut s’écrire
comme produit de polyndmes de degré 1. Une extension de corps L/ K est un corps de décom-
position de P sur K lorsque P est scindé dans L[X] et L = K(aq,...,ap), ot ay,...,q, € L
sont les racines de P dans L.

Proposition 3.8. Soit K un corps et P € K[X]. Alors il existe un corps de décomposition de
P sur K. De plus, un tel corps est unique a isomorphisme pres.

Démonstration. On raisonne par récurrence sur le degré de P. Si deg P = 1, alors K est un
corps de décomposition de P. Sinon, factorisons P comme produit d’irréductibles

p=1[Pm™
i=1

dans I'anneau factoriel K[X]. Considérons un corps de rupture L de P; sur K. Alors L = K(«)
avec « une racine de P;. Par hypothese de récurrence, il existe une extension M/L telle que
P/P™ est scindé dans M et M = L(aq,...,q,) oU ay, ..., a, sont les racines de P/P{"™" dans
M. Alors P est scindé dans M et on a M = K(«a, ay,...,q,) et ces derniéres sont les racines
de P dans M. L’unicité est fastidieuse, elle consiste a montrer qu’on peut toujours prolonger
un isomorphisme de corps a chaque étape de la récurrence. O

Remarque 3.9. /\ Le corps de rupture d’un polynéme irréductible n’est pas toujours son
corps de décomposition. Par exemple, le corps de rupture de X3 — 2 sur Q est une extension
de degré 3 alors que son corps de décomposition est de degré 6 sur Q.

Exercice 7. Soit K un corps et P € K[X] de degré n > 1. Montrer que le corps de décompo-
sition de P sur K est de degré au plus n! sur K.

Définition 3.10. On dit qu’un corps K est algébriquement clos lorsqu’il n’admet pas d’autre
extension algébrique que lui-méme.

Exercice 8. Montrer que les propriétés suivantes sont équivalentes :

1. K est algébriquement clos.
2. Tout polynéme non constant dans K[X] est scindé dans K[X].
3. Tout polynéme non constant dans K[X| admet une racine dans K.

4. Les polynomes irréductibles de K[X] sont les polynomes de degré 1.

Exemple 3.11. C est algébriquement clos (Théoreme de d’Alembert-Gauss ou « Théoreme
fondamental de l'algebre »).

Définition 3.12. Soit L/K une extension de corps. On dit que L est un cloéture algébrique
de K lorsque L/K est algébrique et L est un corps algébriquement clos.

Théoréme 3.13 (Steinitz). Tout corps admet une cloture algébrique. De plus, celle-ci est
unique a isomorphisme pres.

Remarque 3.14. Encore une fois, ce résultat fait appel a 'axiome du choix, donc est non
constructif.

Définition 3.15. La cloture algébrique de K est notée K.
Exercice 9. Est-ce que Q = C ?



4 Exercices

Exercice 10. Aprés avoir montré qu’ils sont irréductibles dans Q[X], déterminer les corps de
rupture et de décomposition des polynomes

X?4+1,X2-2, X3 -2 X4+ 1.

Exercice 11. En utilisant le fait que C est algébriquement clos, déterminer les polynomes
irréductibles de R[X].

Exercice 12. Soit L/K une extension finie de degré p premier. Montrer qu’il n’existe aucune
sous-extension F' telle que K C F' C L.

Exercice 13. Soit K un corps et P € K[X]| de degré n. Montrer que P est irréductible dans
K[X] si et seulement s’il n’existe aucune extension L/K avec [L : K| < n/2 dans laquelle P
admet une racine.

Exercice 14. Montrer que Q(v/2,v3) = Q(v2 + V/3).
Exercice 15. Un corps de rupture est-il unique a unique isomorphisme pres ?
Exercice 16. Montrer que Q est dénombrable.

Exercice 17. Soit L/K une extension de corps et M € M, (K). Montrer que le rang de M,
vue comme matrice dans M, (L), est égal au rang de M, vue comme matrice dans M, (K).
Faire de méme avec le polynome caractéristique et le polynome minimal.

Remarque. Deux matrices de M,,(K) semblables dans M,,(L) le sont dans M,,(K). Pour le
voir, on peut le montrer pour les matrices compagnons et invoquer la réduction de Frobenius.

Exercice 18. Soit L/K une extension finie. Pour o € L, notons Np k() le déterminant de
Vapplication K-linéaire x — ax.

1. Montrer que pour tout o € L, NL/K(oz) € K et que pour tout o, € L, NL/K(ozﬁ) =
Nk (a)Npx(B).

2. Déterminer N, i lorsque K =R et L = C.

3. Déterminer Ny x lorsque K = Q et L = Q(V/d) avec d € Z (on note v/d = i\/|d| lorsque
d<0).

4. Supposons que L = K(a). Déterminer Ny k(a).

Exercice 19. Montrer que si K est un corps fini et L/ K est une extension finie, alors il existe
0 € L tel que L = K(0).

Exercice 20. Soit P € C[X]| unitaire et non constant. Nous allons montrer que P admet une
racine dans C.

1. Montrer que l’'on peut supposer que P est a coefficient réels.

2. On note d = 2"q, avec n,q € N et q impair, le degré de P. On va montrer le résultat par
récurrence sur l’exposant n : Justifier le cas n = 0.



3. Supposons n € N* et le fait que tout polynéme réel de degré 28q¢' avec k < n et ¢ impair
admet une racine dans C. Soit K le corps de décomposition de P sur C et écrivons

d

P=]](X - )

=1

dans K[X|. Pourz € R et 1 <i<j<d, posons f; ;(z) = a; + a; + x5 et

Q.= [] (X—3i).

1<i<j<d
Justifier que, pour tout x € R, Q, € R[X].
4. Montrer que, pour tout x € R, Q, admet une racine dans C.
5. En déduire qu’il existe ¢ < j tels que oy + o € C et oya; € C.
6. Conclure que o, a; € C.

Remarque. Le corps R a la propriété particuliere que tout polynéme de degré impair y admet
une racine, a cause du théoréme des valeurs intermédiaires. Cette propriété est en fait équiva-
lente au fait que R est un corps réel clos, c’est-a-dire que sa cloture algébrique est de degré 2
sur R. Ainsi, il est impossible de démontrer le théoreme de d’Alembert-Gauss « sans analyse ».

Exercice 21. Soit L/K une extension finie et 2/ K une extension, avec Q) algébriqguement clos
(on ne dit pas que Q est une cloture algébrique de K !).

1. Montrer qu’il existe un corps intermédiaire K C F C L et un morphisme de corps
f: F — Q mazximal pour la relation (F, f) < (F', f) définie par F' C F' et f|’F =f.

2. Montrer que F' = L. En déduire que toute extension finie de K se plonge dans §2.

Remarque. C’est en fait vrai pour tout extension algébrique, mais on a besoin du lemme
de Zorn. C’est comme cela que ['on montre l'unicité de la cloture algébrique d’un corps.

3. Supposons maintenant que L = K(«) est le corps de rupture du polynome irréductible
P € K[X], avec P(a)) = 0 (c’est par exemple le cas si K est de caractéristique 0 ou est

fini). Montrer que les morphismes de corps de L dans S correspondent aux racines de P
dans €.

4. En déduire que si P est scindé dans L, alors ’ensemble des morphismes de corps de L
dans Q est un groupe fini d’ordre au plus [L : K]. A quelle condition est-il d’ordre [L : K| ?

Remarque. Sous les bonnes hypotheses (extension normale — P scindé — et séparable — P
n’a que des racines simples), on a donc montré que le groupe de Galois G de L/K est d’ordre
[L : K]. La correspondance de Galois donne une bijection décroissante entre les extensions
intermédiaires L/K/F et les sous-groupes de G. La correspondance va plus loin puisqu’elle

identifie les extensions intermédiaires telles que F'/ K est galoisienne aux sous-groupes distingués
de G'!



