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Anneaux de polynômes et corps de fractions rationnelles

Dans toute cette feuille, A est un anneau commutatif.

1 Corps des fractions
Proposition 1.1. Si A est un anneau intègre, il existe un unique corps Frac(A) contenant A
tel que pour tout corps K et tout morphisme d’anneaux injectif f : A → K, il existe un unique
morphisme d’anneaux g : Frac(A) → K tel que g|A = f . Ce corps est appelé le corps des
fractions de A.

Démonstration. La construction est parfaitement similaire à la construction de Q à partir de Z :
on considère l’ensemble-quotient A × (A \ {0})/ ∼, où (a, b) ∼ (c, d) si et seulement si ad = bc.
On vérifie à la main qu’il s’agit bien d’un corps. En notant a

b
la classe de (a, b), il contient un

anneau isomorphe à A sous la forme de
{

a
1 | a ∈ A

}
et la propriété universelle se vérifie via

g : a
b

7→ f(a)
f(b) ∈ K.

Remarque 1.2. Ainsi, Frac(A) est le « plus petit » corps contenant A.

Proposition 1.3. Soit A un anneau factoriel. Alors tout élément de Frac(A) admet une écriture
unique sous la forme a

b
avec a, b ∈ A, b ̸= 0 et a et b premiers entre eux.

Démonstration. L’existence se montre en simplifiant numérateur et dénominateur par un PGCD
de a et b. L’unicité provient du lemme de Gauss : si a

b
= c

d
avec a et b premiers entre eux et c

et d premiers entre eux, alors ad = bc, d’où a | c et b | d. Si on écrit c = ak et d = bk′ alors
k = k′ d’où a = c et d = b.

2 Propriétés générales d’anneaux de polynômes
Définition 2.1. Soit P =

∑
k∈N

akXk ∈ A[X]. Le degré de P est −∞ si P = 0 et le plus grand

entier k tel que ak ̸= 0 si P ̸= 0.

Proposition 2.2. Soit P, Q ∈ A[X]. Alors :

1. deg(P + Q) ≤ max(deg P, deg Q), avec inégalité stricte si et seulement si deg P = deg Q
et les coefficients dominants de P et Q sont opposés.

2. deg(PQ) ≤ deg P + deg Q, avec inégalité stricte si et seulement si les coefficients do-
minants de P et Q ont un produit nul. En particulier, si A est intègre, il y a toujours
égalité.

Corollaire 2.3. Si A est intègre, alors A[X]× = A×.
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Exercice 1. Trouver un contre-exemple quand A n’est pas intègre.

Théorème 2.4 (Division euclidienne). Soit S, T ∈ A[X] tels que le coefficient dominant de T
est inversible. Alors il existe un unique couple (Q, R) ∈ A[X] vérifiant S = QT + R et R = 0
ou deg R < deg T .

Exercice 2. Poser la division euclidienne de X5 − 3X3 − 2X2 + X + 6 par X3 − X + 1.

Proposition 2.5. L’anneau A[X] est euclidien si et seulement si A[X] est principal si et
seulement si A est un corps.

Démonstration. Si A[X] est euclidien, alors il est principal. Si A[X] est principal, il est intègre
et donc A aussi. Il est alors clair que X est un élément irréductible de A[X] pour des raisons de
degré, et donc (X) est maximal dans A[X]. Ainsi A[X]/(X) ≃ A est un corps. Enfin, si A est
un corps, alors le coefficient dominant d’un polynôme non nul est toujours inversible, et donc
A[X] est euclidien pour le stathme degré.

Définition 2.6. Supposons que A soit un anneau factoriel et soit P ∈ A[X]. Le contenu de
P , noté c(P ), est 0 si P = 0 et le PGCD de ses coefficients sinon. On dit que P est primitif
lorsque c(P ) = 1.

Lemme 2.7 (de Gauss). Supposons que A est factoriel. Alors pour tout P, Q ∈ A[X], c(PQ) =
c(P )c(Q).

Démonstration. Le résultat est clair si P ou Q est nul, donc supposons P, Q ̸= 0. Écrivons
P = ∑

k∈N akXk et Q = ∑
k∈N bkXk. Clairement, on a P = c(P )A et Q = c(Q)B avec A et

B primitifs, donc il suffit de montrer le résultat quand P et Q sont primitifs. Supposons par
l’absurde que PQ n’est pas primitif et soit p irréductible divisant c(PQ). Soit k1 le plus petit
entier k tel que p ne divise pas ak et k2 le plus petit entier k tel que p ne divise pas bk. Alors
le coefficient devant Xk1+k2 de PQ est∑

i+k=k1+k2

aibj = ak1bk2 +
∑

i+j=k1+k2
i<k1 ou j<k2

aibj.

Comme celui-ci est divisible par p tout comme la deuxième somme, p divise ak1bk2 , bien qu’il n’en
divise aucun des deux, ce qui est absurde d’après le lemme d’Euclide. Donc PQ est primitif.

Remarque 2.8. Dans ce qui précède, il suffisait de supposer que A est un anneau à PGCD.

Corollaire 2.9. Supposons que A est factoriel et soit K son corps des fractions. Alors les
irréductibles de A[X] sont les constantes irréductibles dans A et les polynômes non constants
primitifs irréductibles dans K[X].

Démonstration. Pour des raisons de degré, les constantes irréductibles dans A sont irréductibles
dans A[X]. Si P ∈ A[X] est non constant, primitif, et irréductible dans K[X], supposons qu’on
ait P = QR avec Q, R ∈ A[X]. Comme P est irréductible dans K[X], Q ou R est inversible
dans K[X], donc est constant. On a donc (quitte à échanger les rôles), P = aQ ∈ A[X] pour
un a ∈ A \ {0}. Finalement, on a c(P ) = 1 = ac(Q) et donc a ∈ A× ⊂ A[X]×.

Réciproquement, soit P ∈ A[X] irréductible. Si P est constant, alors il est irréductible dans
A. Sinon, P est primitif car, dans le cas contraire, son contenu admettrait un facteur irréductible
p, qui serait également un facteur irréductible de P dans A[X]. Enfin, P est irréductible dans
K[X]. En effet, si on a P = QR avec Q, R ∈ K[X], on écrit Q = a

b
Q̃ et R = c

d
R̃ avec
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a, b, c, d ∈ A, a et b premiers entre eux, c et d premiers entre eux et Q̃, R̃ ∈ A[X] primitifs.
Alors bdP = acQ̃R̃ d’où, d’après le lemme de Gauss, bd = ac. Ainsi, P = ac

bd
Q̃R̃ = Q̃R̃, et

comme P est irréductible dans A[X], Q̃ ∈ A[X]× = A× ⊂ K× ou R̃ ∈ A[X]× = A× ⊂ K×.

Notons qu’au passage, on a montré la chose suivante.

Corollaire 2.10. Soit A un anneau factoriel, K son corps des fractions et P ∈ A[X] tel
que P = QR avec Q, R ∈ K[X]. Alors il existe Q̃, R̃ ∈ A[X] de mêmes degrés que Q et R
respectivement tels que P = Q̃R̃.

Corollaire 2.11. L’anneau A[X] est factoriel si et seulement si A l’est. En particulier, en
notant A[X1, . . . , Xn] = A[X1][X2]...[Xn], alors A[X1, . . . , Xn] est factoriel si et seulement si A
l’est.

3 Racines de polynômes
Définition 3.1. Soit a ∈ A. Il existe un unique morphisme de A-algèbres eva : A[X] → A
envoyant X sur a, appelé morphisme d’évaluation en a. Si P ∈ A[X], on note eva(P ) =
P (a) et on dit que a est racine de P lorsque P (a) = 0.

Proposition 3.2. Soit P ∈ A[X]. Pour tout a ∈ A, a est racine de P si et seulement si
(X − a) | P dans A[X].

Démonstration. La condition (X − a) | P implique clairement que P (a) = 0.
Réciproquement, supposons que P (a) = 0. Comme le coefficient dominant de X − a est

1, inversible dans A, on peut poser la division euclidienne P = (X − a)Q + R avec deg R <
deg(X − a) = 1. Ainsi, R est une constante et en évaluant en a on obtient R = 0.

Remarque 3.3. Ce résultat est le plus souvent énoncé quand A est un corps, mais il reste
valable dans n’importe quel anneau commutatif. Face au jury, il ne faut pas oublier de préciser
que c’est bien parce que le coefficient dominant de X − a est inversible !

Corollaire 3.4. Si A est intègre et P ∈ A[X] \ {0} alors P admet au plus deg P racines dans
A.

Exercice 3. Donner un contre-exemple quand A n’est pas intègre.

Corollaire 3.5. Si A est intègre et infini, alors l’application P 7→ (x 7→ P (x)) de A[X] dans
AA est injective.

Exercice 4. Donner un contre-exemple quand A est intègre fini.

Proposition 3.6 (Polynômes interpolateurs de Lagrange). Soit K un corps, x0, . . . , xn, y0, . . . , yn ∈
K avec les xi deux à deux distincts. Il existe un polynôme P ∈ K[X] de degré au plus n tel que
pour tout i ∈ {1, . . . , n}, P (xi) = yi. Si de plus K est de caractéristique nulle, alors ce polynôme
est unique.

Démonstration. L’existence peut se justifier avec un déterminant de Vandermonde, ou en
construisant explicitement le polynôme

P =
n∑

i=0
yi

∏
j ̸=i

0≤j≤n

X − xj

xi − xj

.

L’unicité vient du fait que la différence de deux tels polynômes s’annule en n + 1 points.
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Exercice 5. Soit K un corps fini (il en existe !). Montrer que l’application P 7→ (x 7→ P (x))
de K[X] dans KK est surjective.

Définition 3.7. Soit P =
n∑

k=0
akXk ∈ A[X]. Le polynôme dérivé (ou la dérivée) de P est

P ′ =
n∑

k=1
kakXk−1 =

n−1∑
k=0

(k + 1)ak+1X
k.

Pour tout k ∈ N, on note P (k) la k-ième dérivée de P .

Exercice 6. Donner une condition nécessaire et suffisante sur P pour que P ′ = 0. Qu’est-ce
que cela donne quand A est intègre ?

Remarque 3.8. Il est clair que (si P ̸= 0) deg P ′ < deg P , et donc si P est de degré n ∈ N
alors P (n) = 0.

Proposition 3.9 (Formule de Taylor). Soit K un corps de caractéristique 0. Alors pour tout
P ∈ K[X] et a ∈ K, on a

P =
∑
k∈N

(X − a)k

k! P (k)(a).

Démonstration.

1. Méthode calculatoire : Poser la division euclidienne de P par (X − a)n et itérer.

2. Par la dualité : Les applications P 7→ P (k)(a), pour 0 ≤ k ≤ n forment une base du dual
de Kn[X], dont la base antéduale est la famille des (X−a)k

k! .

Remarque 3.10. La formule reste valable en caractéristique p > 0, du moment que le degré
de P est strictement inférieur à p.

Définition 3.11. Soit P ∈ A[X] et a ∈ A. On dit que la multiplicité algébrique de a en
tant que racine de P est l’entier k ∈ N tel que (X −a)k | P et (X −a)k+1 ∤ P , et la multiplicité
analytique de a en tant que racine de P est l’entier k ∈ N tel que P (k−1)(a) = 0 et P (k)(a) ̸= 0.
On dit que a est une racine simple de P lorsque sa multiplicité algébrique est 1 et que c’est
une racine multiple lorsque cette multiplicité est supérieure ou égale à 2.

Exercice 7. Comparer ces deux multiplicités.

Remarque 3.12. !△ Si a est une racine multiple de P , alors P et P ′ ont a comme racine
commune et ne sont donc pas premiers entre eux, mais la réciproque est fausse en général car,
en caractéristique non nulle, il se peut que P ′ = 0 sans que P ne soit constant.

Proposition 3.13. Si A est intègre de caractéristique 0 alors la multiplicité algébrique et la
multiplicité analytique de n’importe quel a ∈ A coïncident.
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4 Des critères d’irréductibilité
Proposition 4.1. Soit P ∈ A[X]. Si P est irréductible dans A[X] et de degré au moins 2 alors
P n’a pas de racines dans A. Si A est un corps, P est de degré 2 ou 3 et n’a pas de racine dans
A, alors P est irréductible dans A[X].

Exercice 8. Donner un polynôme non constant, à coefficients dans un corps, sans racine et
non irréductible. Donner un polynôme de degré 2 sans racine et non irréductible.

Exercice 9. Montrer que X2 − 180 est irréductible dans Q[X].

Corollaire 4.2. Soit K un corps de caractéristique différente de 2 et P = aX2 +bX +c ∈ K[X]
de degré 2. Alors P est irréductible dans K[X] si et seulement si son discriminant b2 −4ac n’est
pas un carré dans K.

Remarque 4.3. !△ En caractéristique 2 il n’y a pas de méthode générale ! Le morphisme de
Frobenius peut aider à faire des calculs, mais il n’y a pas d’équivalent du discriminant pour
détecter l’absence ou non de racines.

Proposition 4.4. Soit A un anneau intègre, P ∈ A[X] unitaire et I un idéal premier de A. Si
P est irréductible dans A/I[X] alors P est irréductible dans A[X].

Démonstration. Si P était réductible dans A[X], on aurait P = QR avec Q, R ∈ A[X] non
inversibles et de coefficients dominants inversibles puisque leur produit fait 1. En particulier,
deg Q = deg Q, deg R = deg R ≥ 1. Alors dans A/I[X], P = QR avec Q et R non inversibles
puisque A/I est intègre.

Remarque 4.5. !△ La réciproque est fausse. Par exemple, X4 + 1 est réductible dans tous
les corps Z/pZ mais est irréductible dans Z[X], voir la feuille sur les corps finis.

Exercice 10. Montrer que le polynôme X4 + X + 1 est irréductible dans Z[X].

Théorème 4.6 (Critère d’Eisenstein). Soit A un anneau factoriel et P =
n∑

k=0
akXk ∈ A[X] de

degré n ≥ 1. Supposons qu’il existe un élément premier p ∈ A tel que

1. p | ai pour 0 ≤ i ≤ n − 1.

2. p ∤ an.

3. p2 ∤ a0.

Alors P est irréductible dans Frac(A)[X].

Démonstration. Supposons P réductible dans Frac(A)[X], P = QR avec Q, R ∈ Frac(A)[X]
et deg Q, deg R ≥ 1. D’après le lemme de Gauss, on peut supposer que Q, R ∈ A[X]. Alors
dans A/(p)[X], on a P = QR = anXn. Par intégrité de A/(p), cela veut dire que Q = λXk et
R = µXn−k pour un k ∈ {1, . . . , n − 1}. En particulier, p | Q(0), R(0) d’où p2 | P (0)Q(0) = a0,
ce qui est absurde.

Remarque 4.7. Si de plus, P est primitif alors il est irréductible dans A[X].

Exercice 11. Montrer que Z[X] possède des polynômes irréductibles de tout degré n ≥ 1.
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5 Polynômes symétriques
Définition 5.1. Un polynôme P ∈ A[X1, . . . , Xn] est symétrique lorsque pour tout σ ∈ Sn,

P (Xσ(1), . . . , Xσ(n)) = P.

Les polynômes symétriques élémentaires (en n variables) sont les

Σk =
∑

1≤i1<···<ik≤n

Xi1 . . . Xik

avec 1 ≤ k ≤ n.

Exercice 12. Écrire Σ1, Σ2, Σ3 et Σ4 en 4 variables.

Proposition 5.2 (Relations coefficients-racines). Soit P =
n∑

k=0
akXk ∈ A[X] avec an ̸= 0.

Supposons qu’il existe une factorisation de la forme

P = an

n∏
i=1

(X − λi),

avec λ1, . . . , λn ∈ A. Alors pour 1 ≤ k ≤ n, on a

ak = (−1)n−kanΣn−k(λ1, . . . , λn).

Théorème 5.3 (Théorème fondamental des polynômes symétriques). Soit P ∈ A[X1, . . . , Xn]
symétrique. Alors il existe un unique polynôme Q ∈ A[X1, . . . , Xn] tel que P = Q(Σ1, . . . , Σn).

Démonstration. La démonstration est algorithmique : On élimine les monômes de P dans l’ordre
décroissant pour l’ordre lexicographique sur les degrés. L’unicité se fait par récurrence sur n,
en montrant que si Q(Σ1, . . . , Σn) = 0 alors Q = 0.

Exercice 13. Exprimer le polynôme symétrique X2
1 X2 +X2

1 X3 +X2
2 X1 +X2

2 X3 +X2
3 X1 +X2

3 X2
comme un polynôme en Σ1, Σ2, Σ3.

Corollaire 5.4. Soit P ∈ A[X] et soit B un anneau commutatif contenant A tel que

P =
n∏

i=1
(X − λi) ∈ B[X].

Alors pour tout polynôme symétrique Q ∈ A[X1, . . . , Xn], Q(λ1, . . . , λn) ∈ A.

Exercice 14. Montrer, sans calcul, que pour tout n ∈ N, αn
1 + αn

2 + αn
3 + αn

4 ∈ Z, où

α1 =
√

2 +
√

2, α2 =
√

2 −
√

2, α3 = −
√

2 +
√

2, α4 = −
√

2 −
√

2.

Proposition 5.5 (Sommes de Newton). Pour tout k ∈ N∗, notons σk =
n∑

j=1
Xk

j . Alors on a

kΣk =
k∑

i=1
(−1)i−1Σk−iσi.

Démonstration. Développer
n∏

i=1
(T − Xi), évaluer en chaque Xi et sommer.

Remarque 5.6. !△ Cette formule permet d’exprimer chaque σk par récurrence, du moment
que A est un corps de caractéristique nulle !
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6 Fractions rationnelles
Dans cette section, K désigne un corps.

Définition 6.1. Le corps des fractions K(X) de K[X] est appelé le corps des fractions
rationnelles sur K. Le degré de la fraction rationnelle P

Q
est deg P − deg Q.

Remarque 6.2. Le degré de P
Q

ne dépend pas de P et Q.

Théorème 6.3. Toute fraction rationnelle F ∈ K(X) admet une décomposition unique sous la
forme P + R avec P ∈ K[X] (appelé partie polynomiale de F ) et deg R < 0 (appelé partie
polaire de F ).

Démonstration. Si F = A
B

, on pose la division euclidienne de A par B : A = BQ + R avec
deg R < deg B. Alors F = Q + R

B
. L’unicité vient en considérant les degrés des différences.

Corollaire 6.4 (Décomposition en éléments simples). Soit F = A
B

∈ K(X). Factorisons B =
n∏

i=1
Qmi

i avec les Qi irréductibles. Alors il existe des uniques P, P1,1, . . . , P1,m1 , . . . , Pn,1, . . . , Pn,mn ∈

K[X] avec deg Pi,k < deg Qi tels que

F = P +
n∑

i=1

mi∑
k=1

Pi,k

Qk
i

.

Exercice 15. Donner la décomposition en éléments simples de 1
X4−1 dans R(X) et C(X).

7 Exercices
Exercice 16. Poser la division euclidienne de 5X3 + X + 8 par 8X2 + 4X + 1 dans Z/15Z[X].

Exercice 17. Déterminer les racines du polynôme X2 + 3X − 1 dans Z/35Z.

Exercice 18. Soit a, b ∈ N∗. Déterminer le reste de la division euclidienne de Xa − 1 par
Xb − 1 dans Z[X].

Exercice 19. Décomposer en éléments simples la fraction rationnelle X5+X4+1
X3−X

dans Q(X).

Exercice 20. Soit P =
n∑

k=0
akXk ∈ Z[X]. Montrer que si p

q
∈ Q avec p et q premiers entre eux

est une racine de P alors q | an et p | a0. En déduire que le polynôme X3 + 5X2 − X + 7 est
irréductible dans Q[X].

Exercice 21. Soit K un corps, n ∈ N, n ≥ 2 et a ∈ K. Notons P = Xn − a.

1. Montrer que si p est un nombre premier divisant n et a = bp pour un certain b ∈ K, alors
P est réductible dans K[X].

2. Montrer que si n est divisible par 4 et a = −4b4 pour un certain b ∈ K, alors P est
réductible dans K[X].

Remarque. Il se trouve que la réciproque est vraie : si P est réductible dans K[X] alors a est
de l’une des formes ci-dessus.
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Exercice 22. Montrer la généralisation suivante du critère d’Eisenstein : Soit A un anneau

factoriel, P =
n∑

k=0
akXk, d ∈ {1, . . . , n}, p ∈ A premier tel que :

1. p | ai pour 0 ≤ i ≤ d − 1.

2. p ∤ ad.

3. p2 ∤ a0.

Alors P admet un facteur irréductible dans A[X] de degré au moins d.

Exercice 23. Soit A un anneau commutatif, n ∈ N∗ et k ∈ {1, . . . , n}. Quel est le degré et le
nombre de monômes de Σk ∈ A[X1, . . . , Xn] ?

Exercice 24. Exprimer les coefficients du polynôme caractéristique d’une matrice à coefficients
dans un corps K en fonction de ses valeurs propres.

Exercice 25. Soit K un corps. Pour F = P
Q

∈ K(X), on note F ′ = P ′Q−P Q′

Q2 . Montrer qu’il
n’existe aucune fraction rationnelle F ∈ K(X) telle que F ′ = 1

X
.

Exercice 26. Soit K un corps.

1. Montrer qu’un endomorphisme de K-algèbre de K(X) est de la forme P 7→ P ◦ F avec
F ∈ K(X).

2. Dans le cas d’un automorphisme, montrer que F est un quotient non constant de poly-
nômes de degré 1.

3. En déduire une description du groupe Aut(K(X)).

Exercice 27. Soit A un anneau noethérien. On va montrer que A[X] est noethérien. Rappelons
que la noetherianité est équivalente au fait que toute famille d’idéaux admet un élément maximal
pour l’inclusion.

1. Soit I un idéal de A[X]. Pour n ∈ N, notons cn(I) l’ensemble des coefficients dominants
des éléments de I de degré n, auquel on ajoute 0. Montrer que cn(I) est un idéal de A.

2. Montrer que cn(I) est croissant par rapport à I et par rapport à n.

3. Montrer que si I et J sont des idéaux de A[X] avec I ⊂ J , alors I = J si et seulement si
∀n ∈ N, cn(I) = cn(J).

4. Soit (In)n∈N une suite croissante d’idéaux de A[X]. En considérant la famille d’idéaux
{ck(In) | k, n ∈ N}, montrer que la suite (In)n∈N est stationnaire.

5. Montrer qu’un quotient d’anneau noethérien est noethérien. En déduire que toute A-
algèbre de type fini est noethérienne.

Exercice 28. Soit K un corps et n ∈ N∗. On définit le corps des fractions rationnelles en
n variables sur K comme le corps des fractions K(X1, . . . , Xn) de K[X1, . . . , Xn]. Une fraction
rationnelle F ∈ K(X1, . . . , Xn) est dite symétrique lorsque pour tout σ ∈ Sn, F (Xσ(1), . . . , Xσ(n)) =
F . Montrer que toute fraction rationnelle symétrique est une fraction rationnelle en les poly-
nômes symétriques élémentaires.
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Exercice 29. Soit K un corps de caractéristique différente de 2 et n ∈ N∗. On appelle poly-
nôme alterné tout polynôme P ∈ K[X1, . . . , Xn] tel que pour tout σ ∈ An, σ.P (Xσ(1), . . . , Xσ(n)) =
P .

1. Montrer que le polynôme ∆ = ∏
1≤i<j≤n(Xj − Xi) est alterné et non symétrique.

2. Soit P ∈ K[X1, . . . , Xn] alterné et τ ∈ Sn \ An. Montrer que τ.P est alterné.

3. On pose A = P + τ.P et B = P − τ.P . Montrer que A est symétrique et que B = ∆Q
pour un certain Q ∈ K[X1, . . . , Xn] symétrique.

4. En déduire que K[X1, . . . , Xn]An = K[X1, . . . , Xn]Sn [∆].

Remarque. Le résultat reste vrai sur tout anneau commutatif de caractéristique différente de
2. En caractéristique 2, ∆ est symétrique, et le résultat est plus difficile à énoncer.

Exercice 30. Soit K un corps. Si P =
n∑

k=0
akXk ∈ K[X] et Q =

m∑
k=0

bkXk ∈ K[X] sont de

degrés n et m respectivement, leur matrice de Sylvester est la matrice carrée de taille (m+n)
donnée par

S(P, Q) =



an 0 · · · 0 bm 0 · · · 0
an−1 an

. . . ... ... bm
. . . ...

... an−1
. . . 0 ... . . . 0

... ... . . . an b1 bm

a0 an−1 b0
. . . ... ...

0 . . . ... 0 . . . b1
...

... . . . a0
... ... . . . b0 b1

0 · · · 0 a0 0 · · · 0 b0



.

On définit le résultant de P et Q comme Res(P, Q) = det S(P, Q).

1. Montrer que pour tout a, b ∈ K, Res(aP, bQ) = ambnRes(P, Q) et que Res(Q, P ) =
(−1)mnRes(P, Q).

2. Montrer que S(P, Q) est la matrice de l’application linéaire (U, V ) 7→ PU + QV définie
sur Km−1[X] × Kn−1[X] dans une base bien choisie.

3. En déduire que Res(P, Q) = 0 si et seulement si P et Q ne sont pas premiers entre eux.

Remarque. Le discriminant d’un polynôme P est définie comme Res(P, P ′).

Exercice 31. Montrer que le polynôme X2 + 1 admet une infinité de racines dans l’algèbre des
quaternions H (voir la feuille 1 pour la définition). On pourra calculer le carré d’un quaternion
imaginaire pur.

Exercice 32. Montrer que si P =
n∑

k=0
akXk ∈ A[X]\{0} avec an ̸= 0, alors P est inversible dans

A[X] si et seulement a0 est inversible dans A et aA, . . . , an sont nilpotents. (Indication : Pour
l’implication directe, faire une récurrence sur n, en notant que la somme d’un inversible et d’un
nilpotent qui commutent est inversible. Utiliser ce dernier fait pour l’implication réciproque.)
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