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Anneaux de polynémes et corps de fractions rationnelles

Dans toute cette feuille, A est un anneau commutatif.

1 Corps des fractions

Proposition 1.1. Si A est un anneau intégre, il existe un unique corps Frac(A) contenant A
tel que pour tout corps K et tout morphisme d’anneaux injectif f : A — K, il existe un unique
morphisme d’anneaus g : Frac(A) — K tel que ga = f. Ce corps est appelé le corps des
fractions de A.

Démonstration. La construction est parfaitement similaire a la construction de Q a partir de Z :
on considere 'ensemble-quotient A x (A \ {0})/ ~, ot (a,b) ~ (c,d) si et seulement si ad = bc.
On vérifie a la main qu'il s’agit bien d’un corps. En notant ¢ la classe de (a,b), il contient un

anneau isomorphe a A sous la forme de {% |a € A} et la propriété universelle se vérifie via

cay f(a)
g.be(b)EK. O

Remarque 1.2. Ainsi, Frac(A) est le « plus petit » corps contenant A.

Proposition 1.3. Soit A un anneau factoriel. Alors tout élément de Frac(A) admet une écriture

unique sous la forme § avec a,b € A,b# 0 el a et b premiers entre eux.

Démonstration. 1’existence se montre en simplifiant numérateur et dénominateur par un PGCD
de a et b. L'unicité provient du lemme de Gauss : si § = § avec a et b premiers entre eux et ¢
et d premiers entre eux, alors ad = bc, d’ou a | c et b | d. Si on écrit ¢ = ak et d = bk’ alors

k=Fk dota=cetd=b. [l

2 Propriétés générales d’anneaux de polynémes

Définition 2.1. Soit P = > @, X" € A[X]. Le degré de P est —oo si P =0 et le plus grand
keN
entier k tel que ay, # 0 si P # 0.

Proposition 2.2. Soit P,Q € A[X]. Alors :

1. deg(P + Q) < max(deg P,deg Q), avec inégalité stricte si et seulement si deg P = deg Q)
et les coefficients dominants de P et () sont opposés.

2. deg(PQ) < deg P + deg @, avec inégalité stricte si et seulement si les coefficients do-
minants de P et QQ ont un produit nul. En particulier, si A est intégre, il y a toujours
éqalité.

Corollaire 2.3. Si A est intégre, alors A[X]|* = A*.



Exercice 1. Trouver un contre-exemple quand A n’est pas intégre.

Théoréme 2.4 (Division euclidienne). Soit S,T € A[X] tels que le coefficient dominant de T
est inversible. Alors il eziste un unique couple (Q, R) € A[X] vérifiant S =QT + R et R=0
ou deg R < degT'.

Exercice 2. Poser la division euclidienne de X° —3X3 —2X? + X +6 par X3 — X + 1.

Proposition 2.5. L’anneau A[X] est euclidien si et seulement si A[X] est principal si et
seulement si A est un corps.

Démonstration. Si A[X] est euclidien, alors il est principal. Si A[X] est principal, il est integre
et donc A aussi. Il est alors clair que X est un élément irréductible de A[X] pour des raisons de
degré, et donc (X)) est maximal dans A[X]. Ainsi A[X]/(X) ~ A est un corps. Enfin, si A est
un corps, alors le coefficient dominant d’un polynéme non nul est toujours inversible, et donc
A[X] est euclidien pour le stathme degré. O

Définition 2.6. Supposons que A soit un anneau factoriel et soit P € A[X]|. Le contenu de
P, noté ¢(P), est 0 si P =0 et le PGCD de ses coefficients sinon. On dit que P est primitif
lorsque c¢(P) = 1.

Lemme 2.7 (de Gauss). Supposons que A est factoriel. Alors pour tout P,Q € A[X], ¢(PQ) =
c(P)e(Q).

Démonstration. Le résultat est clair si P ou @Q est nul, donc supposons P,Q # 0. Ecrivons
P =YienarXF et Q = Ypen b X", Clairement, on a P = ¢(P)A et Q = ¢(Q)B avec A et
B primitifs, donc il suffit de montrer le résultat quand P et () sont primitifs. Supposons par
I'absurde que PQ n’est pas primitif et soit p irréductible divisant ¢(PQ). Soit ki le plus petit
entier k£ tel que p ne divise pas ay et ko le plus petit entier k tel que p ne divise pas b,. Alors
le coefficient devant X*¥1**2 de PQ est

> abj=apby,+ >, ab;.
i+k=k1+ko i+j=k1+ko

i<kq ou j<ko
Comme celui-ci est divisible par p tout comme la deuxieme somme, p divise ag, by,, bien qu’il n’en
divise aucun des deux, ce qui est absurde d’apres le lemme d’Euclide. Donc PQ est primitif. [

Remarque 2.8. Dans ce qui précede, il suffisait de supposer que A est un anneau a PGCD.

Corollaire 2.9. Supposons que A est factoriel et soit K son corps des fractions. Alors les
irréductibles de A[X] sont les constantes irréductibles dans A et les polyndomes non constants
primitifs irréductibles dans K[X].

Démonstration. Pour des raisons de degré, les constantes irréductibles dans A sont irréductibles
dans A[X]. Si P € A[X] est non constant, primitif, et irréductible dans K[X], supposons qu’on
ait P = QR avec Q, R € A[X]. Comme P est irréductible dans K[X], @ ou R est inversible
dans K[X], donc est constant. On a donc (quitte a échanger les roles), P = a@ € A[X] pour
un a € A\ {0}. Finalement, on a ¢(P) = 1 = ac(Q) et donc a € A* C A[X]*.
Réciproquement, soit P € A[X] irréductible. Si P est constant, alors il est irréductible dans
A. Sinon, P est primitif car, dans le cas contraire, son contenu admettrait un facteur irréductible
p, qui serait également un facteur irréductible de P dans A[X]. Enfin, P est irréductible dans
K[X]. En effet, si on a P = QR avec Q,R € K|[X], on écrit Q = %Q et R = gfx’ avec
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a,b,c,d € A, a et b premiers entre eux, ¢ et d premiers entre eux et Q, R € A[X] primitifs.
Alors bdP = acQR d’on, d’apreés le lemme de Gauss, bd = ac. Ainsi, P = —QR = @R, et

comme P est irréductible dans A[X], Q € A[X]* = AX C K* ou R € A[X]* = A* c K*. O

Notons qu’au passage, on a montré la chose suivante.

Corollaire 2.10. Soit A un anneau factoriel, K son corps des fractions et P € A[X] tel
que P = QR avec Q, R € K[X]. Alors il existe Q,R € A[X] de mémes degrés que Q et R
respectivement tels que P = QR.

Corollaire 2.11. L’anneau A[X] est factoriel si et seulement si A 'est. En particulier, en
notant A[Xy, ..., X,] = A[Xq][X3]...[X.], alors A[Xq,. .., X,] est factoriel si et seulement si A
lest.

3 Racines de polynémes

Définition 3.1. Soit a € A. Il existe un unique morphisme de A-algébres ev, : A[X] — A
envoyant X sur a, appelé morphisme d’évaluation en a. Si P € A[X], on note ev,(P) =
P(a) et on dit que a est racine de P lorsque P(a) = 0.

Proposition 3.2. Soit P € A[X]. Pour tout a € A, a est racine de P si et seulement si
(X —a) | P dans A[X].

Démonstration. La condition (X — a) | P implique clairement que P(a) = 0.

Réciproquement, supposons que P(a) = 0. Comme le coefficient dominant de X — a est
1, inversible dans A, on peut poser la division euclidienne P = (X — a)Q) + R avec deg R <
deg(X — a) = 1. Ainsi, R est une constante et en évaluant en a on obtient R = 0. O

Remarque 3.3. Ce résultat est le plus souvent énoncé quand A est un corps, mais il reste
valable dans n’importe quel anneau commutatif. Face au jury, il ne faut pas oublier de préciser
que c’est bien parce que le coefficient dominant de X — a est inversible !

Corollaire 3.4. Si A est intégre et P € A[X]\ {0} alors P admet au plus deg P racines dans
A.

Exercice 3. Donner un contre-exemple quand A n’est pas intégre.

Corollaire 3.5. Si A est intégre et infini, alors lapplication P — (x — P(z)) de A[X] dans
A4 est injective.

Exercice 4. Donner un contre-exemple quand A est intégre fini.

Proposition 3.6 (Polyndmes interpolateurs de Lagrange). Soit K un corps, xg, ..., Tn, Yo, - -, Yn €
K avec les x; deux d deux distincts. 1l existe un polynome P € K|[X| de degré au plus n tel que
pour touti € {1,...,n}, P(x;) = y;. Si de plus K est de caractéristique nulle, alors ce polyndome
est unique.

Démonstration. L’existence peut se justifier avec un déterminant de Vandermonde, ou en
construisant explicitement le polynome

x.

J

P= Eylll x_x.

1=0 J# g J
0<j<n

L’unicité vient du fait que la différence de deux tels polynémes s’annule en n + 1 points. [



Exercice 5. Soit K un corps fini (il en existe!). Montrer que l'application P +— (x — P(z))
de K[X] dans KX est surjective.

Définition 3.7. Soit P =Y a; X* € A[X]. Le polynéme dérivé (ou la dérivée) de P est

k=0
n n—1
P'=3 kap X" =3 (k+ Dag X"
k=1 k=0

Pour tout k € N, on note P%® la k-iéme dérivée de P.

Exercice 6. Donner une condition nécessaire et suffisante sur P pour que P' = 0. Qu’est-ce
que cela donne quand A est intégre ?

Remarque 3.8. 1l est clair que (si P # 0) deg P’ < deg P, et donc si P est de degré n € N
alors P = (.

Proposition 3.9 (Formule de Taylor). Soit K un corps de caractéristique 0. Alors pour tout
PeK[X]etae K, ona

p-y Yo A Y P4 (a).

keN k

Démonstration.
1. Méthode calculatoire : Poser la division euclidienne de P par (X — a)" et itérer.

2. Par la dualité : Les applications P+ P®)(a), pour 0 < k < n forment une base du dual

de K,[X], dont la base antéduale est la famille des (X;!a)k.

[]

Remarque 3.10. La formule reste valable en caractéristique p > 0, du moment que le degré
de P est strictement inférieur a p.

Définition 3.11. Soit P € A[X] et a € A. On dit que la multiplicité algébrique de a en
tant que racine de P est lentier k € N tel que (X —a)* | P et (X —a)*™ { P, et la multiplicité
analytique de a en tant que racine de P est Uentier k € N tel que P*~Y(a) = 0 et P®)(a) # 0.
On dit que a est une racine simple de P lorsque sa multiplicité algébrique est 1 et que c’est
une racine multiple lorsque cette multiplicité est supérieure ou égale a 2.

Exercice 7. Comparer ces deux multiplicités.

Remarque 3.12. /N Si @ est une racine multiple de P, alors P et P’ ont a comme racine
commune et ne sont donc pas premiers entre eux, mais la réciproque est fausse en général car,
en caractéristique non nulle, il se peut que P’ = 0 sans que P ne soit constant.

Proposition 3.13. Si A est intégre de caractéristique 0 alors la multiplicité algébrique et la
multiplicité analytique de n’importe quel a € A coincident.



4 Des criteres d’irréductibilité

Proposition 4.1. Soit P € A[X]. Si P est irréductible dans A[X] et de degré au moins 2 alors
P n’a pas de racines dans A. Si A est un corps, P est de degré 2 ou 3 et n’a pas de racine dans
A, alors P est irréductible dans A[X].

Exercice 8. Donner un polynome non constant, a coefficients dans un corps, sans racine et
non irréductible. Donner un polynome de degré 2 sans racine et non irréductible.

Exercice 9. Montrer que X? — 180 est irréductible dans Q[X].

Corollaire 4.2. Soit K un corps de caractéristique différente de 2 et P = aX?*+0X +c € K[X]
de degré 2. Alors P est irréductible dans K[X] si et seulement si son discriminant b* —4ac n’est
pas un carré dans K.

Remarque 4.3. /\ En caractéristique 2 il n’y a pas de méthode générale! Le morphisme de
Frobenius peut aider a faire des calculs, mais il n’y a pas d’équivalent du discriminant pour
détecter I'absence ou non de racines.

Proposition 4.4. Soit A un anneau intégre, P € A[X] unitaire et I un idéal premier de A. Si
P est irréductible dans A/I[X] alors P est irréductible dans A[X].

Démonstration. Si P était réductible dans A[X], on aurait P = QR avec Q, R € A[X] non
inversibles et de coefficients dominants inversibles puisque leur produit fait 1. En particulier,
deg @ = degQ,deg R = deg R > 1. Alors dans A/I[X], P = QR avec @ et R non inversibles
puisque A/ est integre. O

Remarque 4.5. A La réciproque est fausse. Par exemple, X* + 1 est réductible dans tous
les corps Z/pZ mais est irréductible dans Z[X], voir la feuille sur les corps finis.

Exercice 10. Montrer que le polynome X* + X + 1 est irréductible dans Z[X].

Théoréme 4.6 (Critére d’Eisenstein). Soit A un anneau factoriel et P =" ay X" € A[X] de
k=0
degré n > 1. Supposons qu’il existe un élément premier p € A tel que

1. pla; pour0<i<mn-—1.

2. ptay.

3. p*tap.

Alors P est irréductible dans Frac(A)[X].

Démonstration. Supposons P réductible dans Frac(A)[X], P = QR avec @, R € Frac(A)[X]
et deg@,deg R > 1. D’apres le lemme de Gauss, on peut supposer que @, R € A[X]. Alors
dans A/(p)[X], on a P = QR = a, X". Par intégrité de A/(p), cela veut dire que Q = AXF et
R = puX"* pour un k € {1,...,n — 1}. En particulier, p | Q(0), R(0) d’ott p* | P(0)Q(0) = ay,

ce qui est absurde. O

Remarque 4.7. Si de plus, P est primitif alors il est irréductible dans A[X].

Exercice 11. Montrer que Z[X| posséde des polyndomes irréductibles de tout degré n > 1.



5 Polynémes symétriques

Définition 5.1. Un polynome P € A[Xq, ..., X,] est symétrique lorsque pour tout o € &,
P(Xg(l), o ,Xg(n)) =P
Les polynémes symétriques élémentaires (en n variables) sont les

Se= Y XX,
1<iy <--<ip<n

avec 1 < k <mn.

Exercice 12. Ecrire Y1, 29, 23 et Xy en 4 wvariables.

Proposition 5.2 (Relations coefficients-racines). Soit P = > a; X" € A[X] avec a, # 0.
k=0
Supposons qu’il existe une factorisation de la forme

P = Qp, H(X — /\Z),
i=1
avec N\, ..., \p € A. Alors pour 1 <k <mn, on a
ar = (—1)"%a, %, (A1, ..., M)
Théoréme 5.3 (Théoreme fondamental des polynémes symétriques). Soit P € A[Xy,..., X,]
symétrique. Alors il existe un unique polynome Q € A[Xy,..., X,] tel que P = Q(X4,...,%,).

Démonstration. La démonstration est algorithmique : On élimine les monémes de P dans 'ordre
décroissant pour 'ordre lexicographique sur les degrés. L’unicité se fait par récurrence sur n,
en montrant que si Q(Xq,...,%,) = 0 alors @ = 0. ]

Exercice 13. Ezprimer le polynome symétrique X7 Xo+ X7 X3+ X3X1 + X3 X3+ X2X + X2 X,
comme un polynome en Xq, Y9, X3.

Corollaire 5.4. Soit P € A[X] et soit B un anneau commutatif contenant A tel que

P=TI(X - ) < BIX].

i=1
Alors pour tout polynéme symétrique @ € A[X1, ..., X,],Q(M\, ..., \) € A.

Exercice 14. Montrer, sans calcul, que pour tout n € N, of + o + o + o) € Z, ot

ap = \/2+\/§,(X2: \/2—\/5,063:—\/2—{—\/5,@4:—\/2—\/5.

Proposition 5.5 (Sommes de Newton). Pour tout k € N*, notons oy =y _ XJ’-“. Alors on a

j=1
k .
l{:Zk = Z(—l)lilzk,ia}
i=1
Démonstration. Développer H(T — X;), évaluer en chaque X; et sommer. O

i=1

Remarque 5.6. /\ Cette formule permet d’exprimer chaque o, par récurrence, du moment
que A est un corps de caractéristique nulle!



6 Fractions rationnelles

Dans cette section, K désigne un corps.

Définition 6.1. Le corps des fractions K(X) de K[X] est appelé le corps des fractions
rationnelles sur K. Le degré de la fraction mtwnnelle est deg P — deg ().

Remarque 6.2. Le degré de g ne dépend pas de P et ).

Théoréme 6.3. Toute fraction rationnelle F' € K(X) admet une décomposition unique sous la
forme P+ R avec P € K[X] (appelé partie polynomiale de F') et deg R < 0 (appelé partie
polaire de F).

Démonstration. Si F = %, on pose la division euclidienne de A par B : A = BQ + R avec
deg R < deg B. Alors F = @ + %. L’unicité vient en considérant les degrés des différences. [

Corollaire 6.4 (Décomposition en éléments simples). Soit F' = 4 € K(X). Factorisons B =
H Q;" avec les Q; irréductibles. Alors il existe des uniques P, Py, ..., Piyys- . s Poayo ooy P, €
i=1

K[X] avec deg P\, < deg Q; tels que

n m’LP

=1 k=1

Exercice 15. Donner la décomposition en éléments simples de wi— dans R(X) et C(X).

7 Exercices

Exercice 16. Poser la division euclidienne de 5X°+ X +8 par 8X? +4X +1 dans Z/15Z[X].
Exercice 17. Déterminer les racines du polynome X* + 3X — 1 dans Z/35Z.

Exercice 18. Soit a,b € N*. Déterminer le reste de la division euclidienne de X* — 1 par
Xt —1 dans Z[X].

Exercice 19. Décomposer en éléments simples la fraction rationnelle LM dans Q(X).

Exercice 20. Soit P = Z arX* € Z[X]. Montrer que si % € Q avec p et q premiers entre eux
k=0
est une racine de P alors q | a, et p | ag. En déduire que le polynome X3 +5X? — X + 7 est

irréductible dans Q[X].
Exercice 21. Soit K un corps, n € Nyn > 2 et a € K. Notons P = X" — a.

1. Montrer que si p est un nombre premier divisant n et a = b” pour un certain b € K, alors
P est réductible dans K[X].

2. Montrer que si n est divisible par 4 et a = —4b* pour un certain b € K, alors P est
réductible dans K|[X].

Remarque. Il se trouve que la réciproque est vraie : si P est réductible dans K|[X] alors a est
de I'une des formes ci-dessus.



Exercice 22. Montrer la généralisation suivante du critére d’Fisenstein : Soit A un anneau

factoriel, P =" apX®, de{l,...,n}, p€ A premier tel que :
k=0

1. pla; pour0<i<d-1.

2. p1fag.

3. p*tagp.

Alors P admet un facteur irréductible dans A[X] de degré au moins d.

Exercice 23. Soit A un anneau commutatif, n € N* et k € {1,...,n}. Quel est le degré et le
nombre de mondmes de ¥y € A[Xq,..., X,] ?

Exercice 24. FExprimer les coefficients du polynome caractéristique d’une matrice a coefficients
dans un corps K en fonction de ses valeurs propres.

Exercice 25. Soit K un corps. Pour F = g € K(X), on note F' = %. Montrer qu’il
n'existe aucune fraction rationnelle F € K(X) telle que F' = +.

Exercice 26. Soit K un corps.

1. Montrer qu’un endomorphisme de K-algébre de K(X) est de la forme P — P o F avec
F e K(X).

2. Dans le cas d’un automorphisme, montrer que F est un quotient non constant de poly-
nomes de degré 1.

3. En déduire une description du groupe Aut(K(X)).

Exercice 27. Soit A un anneau noethérien. On va montrer que A[X] est noethérien. Rappelons
que la noetherianité est équivalente au fait que toute famille d’idéaux admet un élément maximal
pour l'inclusion.

1. Soit I un idéal de A[X]. Pour n € N, notons ¢,(I) l’'ensemble des coefficients dominants
des éléments de I de degré n, auquel on ajoute 0. Montrer que c,(I) est un idéal de A.

2. Montrer que c,(I) est croissant par rapport a I et par rapport da n.

3. Montrer que si I et J sont des idéauz de A[X] avec I C J, alors I = J si et seulement si
Vn e N,e,(I) = cn(J).

4. Soit (I,)nen une suite croissante d’idéaux de A[X]. En considérant la famille d’idéaux
{cx(1,) | k,n € N}, montrer que la suite (I,,)nen est stationnaire.

5. Montrer qu’un quotient d’anneau noethérien est noethérien. En déduire que toute A-
algebre de type fini est noethérienne.

Exercice 28. Soit K un corps et n € N*. On définit le corps des fractions rationnelles en

n variables sur K comme le corps des fractions K (X, ..., X,) de K[Xy,...,X,]. Une fraction
rationnelle F € K(Xq,...,X,) est dite symétrique lorsque pour tout o € &,, F(X,q), ..., Xom)) =
F. Montrer que toute fraction rationnelle symétrique est une fraction rationnelle en les poly-
nomes symétriques élémentaires.



Exercice 29. Soit K un corps de caractéristique différente de 2 et n € N*. On appelle poly-
noéme alterné tout polynome P € K[X, ..., X,] tel que pour tout o € A, 0.P(X,q1), .-, Xom)) =
P.

1. Montrer que le polynome A = []i<;c;<n(X; — X;) est alterné et non symétrique.
2. Soit P € K[Xy,...,X,] alterné et 7 € S,, \ A,,. Montrer que 7.P est alterné.

3. On pose A= P+ 1.P et B= P — 1.P. Montrer que A est symétrique et que B = AQ
pour un certain Q € K[Xq,...,X,] symétrique.

4. En déduire que K[X1,..., X,]* = K[X1,..., X,|%"[A].

Remarque. Le résultat reste vrai sur tout anneau commutatif de caractéristique différente de
2. En caractéristique 2, A est symétrique, et le résultat est plus difficile & énoncer.

Exercice 30. Soit K un corps. $i P =Y a;X" € K[X] et Q = > b X" € K[X] sont de
k=0 k=0
degrés n et m respectivement, leur matrice de Sylvester est la matrice carrée de taille (m+n)

donnée par

an, 0 0 b, O 0
Ap—1 (079 : bm
QAp—1 0 0
S(P, Q) _ Qp bl bm
ao Ap—1 b(_) .
’ Qo e bo bl
0 ce 0 ao o --- 0 b

On définit le résultant de P et Q comme Res(P,Q) = det S(P, Q).

1. Montrer que pour tout a,b € K, Res(aP,bQ) = a™b"Res(P,Q) et que Res(Q,P) =
(—1)""Res(P, Q).

2. Montrer que S(P,Q) est la matrice de l'application linéaire (U, V) — PU + QV définie
sur Kp—1[X] x K,_1[X] dans une base bien choisie.

3. En déduire que Res(P,Q) = 0 si et seulement si P et () ne sont pas premiers entre eut.

Remarque. Le discriminant d’un polynéme P est définie comme Res(P, P’).

Exercice 31. Montrer que le polynome X?+1 admet une infinité de racines dans l'algébre des
quaternions H (voir la feuille 1 pour la définition). On pourra calculer le carré d’un quaternion
1maginaire pur.

Exercice 32. Montrer que si P =Y ay X" € A[X]|\{0} avec a, # 0, alors P est inversible dans
k=0

A[X] si et seulement aqy est inversible dans A et aga, ..., a, sont nilpotents. (Indication : Pour

I’implication directe, faire une récurrence surn, en notant que la somme d’un inversible et d’un

nilpotent qui commutent est inversible. Utiliser ce dernier fait pour limplication réciproque.)



