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Anneaux et éléments d’anneaux remarquables

Dans cette feuille, A désigne un anneau commutatif.

1 Divisibilité dans les anneaux
Définition 1.1. Soit a, b ∈ A. On dit que a divise b, et on note a | b, lorsqu’il existe c ∈ A
tel que b = ac. On dit que a et b sont associés lorsque a | b et b | a.

Exercice 1. Montrer que a divise b si et seulement si (b) ⊂ (a). En particulier, a et b sont
associés si et seulement (a) = (b).

Proposition 1.2. Si A est intègre, alors a et b sont associés lorsqu’il existe u ∈ A× tel que
b = ua.

Démonstration. Si b = ua avec u ∈ A× alors a | b, et comme a = u−1b, b | a. Réciproquement, si
a | b et b | a alors il existe c, d ∈ A tels que b = ca et a = db, d’où b = cdb. Ainsi, b(1 − cd) = 0.
Par intégrité, ou bien b = 0, auquel cas a = 0 et on a bien b = 1a, ou bien (1 − cd) = 0,
autrement dit c et d sont inversibles dans A.

Définition 1.3. Soit a ∈ A. On dit que a est un diviseur de zéro lorsque a ∈ A \ {0} il
existe b ∈ A \ {0} tel que ab = 0. On dit que a est nilpotent lorsqu’il existe n ∈ N∗ tel que
an = 0. On dit que a est un élément régulier lorsqu’il n’est ni nul, ni un diviseur de zéro.

Remarque 1.4. Les éléments réguliers sont exactement les éléments simplifiables de A,
c’est-à-dire ceux tels que ab = ac implique b = c.

Exercice 2. Soit n ∈ N∗. Déterminer les diviseurs de zéro et les éléments nilpotents de Z/nZ.

Définition 1.5. Supposons que A est intègre et soit a ∈ A non nul. On dit que a est premier
lorsqu’il n’est pas inversible et pour tout b, c ∈ A,

a | bc ⇒ a | b ou a | c.

On dit que a est irréductible lorsque a n’est pas inversible et lorsque l’écriture a = bc avec
b, c ∈ A implique que b ou c est inversible.

Exercice 3. Montrer qu’un élément premier est irréductible. Montrer que la réciproque n’est
pas toujours vraie.

Proposition 1.6. Supposons que A est intègre et soit a ∈ A. Alors a est premier si et seulement
si a ̸= 0 et (a) est premier.

Définition 1.7. Soit a, b ∈ A.
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1. On dit que a et b admettent un PGCD (plus grand diviseur commun) dans A lorsque l’en-
semble {d ∈ A | d | a, d | b} admet un maximum pour la divisibilité. On note PGCD(a, b)
l’idéal engendré par un tel PGCD.

2. On dit que a et b admettent un PPCM (plus petit commun multiple) dans A lorsque
l’ensemble {m ∈ A | a | m, b | m} admet un minimum pour la divisibilité. On note
PPCM(a, b) l’idéal engendré par un tel PPCM.

3. On dit que a et b sont premiers entre eux lorsque 1 est un PGCD de a et b.

Remarque 1.8. !△ Un PGCD ou un PPCM n’a pas de raison d’exister en général dans un
anneau, et lorsqu’il existe, il n’est unique qu’à association près, ce qui justifie que les idéaux
PGCD(a, b) et PPCM(a, b) sont bien définis.

Exercice 4. Montrer que d est un PGCD de a et b si et seulement si (d) est un élément
minimal (pour l’inclusion) de {(c) | c ∈ A, (a) + (b) ⊂ (c)}, et que m est un PPCM de a et b si
et seulement si (m) est un élément maximal de {(n) | n ∈ A, (n) ⊂ (a) ∩ (b)}.

2 Anneaux factoriels
Définition 2.1. On dit que A est un anneau factoriel lorsque :

i) A est intègre.

ii) Tout élément non nul de A est associé à un produit d’éléments irréductibles (Propriété
E).

iii) Toute factorisation en produit d’irréductibles est unique : Si ∏r
i=1 pi = ∏s

j=1 qj avec
p1, . . . , pr, q1, . . . , qs ∈ A irréductibles, alors r = s et il existe une permutation σ ∈ Sr

telle que ∀i ∈ {1, . . . , r}, ∃ui ∈ A×, qi = uipσ(i) (Propriété U).

Remarque 2.2. Les facteurs irréductibles d’un élément non nul d’un anneau factoriel sont
donc seulement définies à multiplication par un inversible près.

Exemple 2.3.

1. Z est un anneau factoriel en vertu du théorème fondamental de l’arithmétique.

2. Un corps est un anneau factoriel puisque tout élément non nul y est inversible, et donc
admet une décomposition comme produit vide d’irréductibles.

3. L’anneau A[X, X1/2, . . . ] n’est pas factoriel car il ne vérifie pas la propriété E.

4. L’anneau Z[i
√

5] n’est pas factoriel car il ne vérifie pas la propriété U (voir les exercices).

Proposition 2.4 (Lemme d’Euclide). Si A est factoriel, alors un élément est premier si et
seulement s’il est irréductible.

Démonstration. Un élément premier étant toujours irréductible, il s’agit de montrer la réci-
proque. Soit donc p ∈ A un élément irréductible et a, b ∈ A tels que p | ab. Il existe donc
c ∈ A tel que pc = ab. Puisque A est factoriel, a et b admettent une décomposition en produit
d’irréductibles, qui donne une telle décomposition pour ab. L’unicité de celle-ci implique que
p intervient dans la décomposition de a ou de b, d’où p | a ou p | b, autrement dit, p est
premier.
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Proposition 2.5 (Lemme de Gauss). Si A est factoriel et a, b, c ∈ A sont tels que a | bc et a
est premier avec b, alors a | c.

Démonstration. Par hypothèse, il existe d ∈ A tel que ad = bc. Si on écrit b = p1 . . . pr et
c = q1 . . . qs les décompositions en produits d’irréductibles de b et c alors ad = p1 . . . prq1 . . . qs,
qui est donc la décomposition en produit d’irréductibles de ad. Mais on peut également obtenir
celle-ci à partir de celles de a et de d, et la décomposition en produit d’irréductibles de a ne
contient aucun irréductible associé aux pi puisque a et b sont premiers entre eux. L’unicité de la
décomposition en produits d’irréductibles de ad donne que les facteurs irréductibles de a sont
associés à des qj, autrement dit, que a | c.

Remarque 2.6. En fait, le lemme d’Euclide est un cas particulier du lemme de Gauss, car
un irréductible ne divise pas un élément donné de A si et seulement s’il est premier avec lui.

Proposition 2.7. Supposons que A est un anneau factoriel. Pour a, b ∈ A non nuls, écrivons

a =
r∏

i=1
pαi

i

et
b = u

r∏
i=1

pβi
i

avec les pi irréductibles deux à deux non associés, αi, βi ∈ N et u ∈ A×. Alors
r∏

i=1
p

min(αi,βi)
i est

un PGCD de a et b et
r∏

i=1
p

max(αi,βi)
i en est un PPCM.

Proposition 2.8. Si A est factoriel et a, b ∈ A sont non nuls, alors

PGCD(a, b)PPCM(a, b) = (ab).

3 Anneaux principaux
Définition 3.1. Un idéal de A est dit principal lorsqu’il est engendré par un élément. L’an-
neau A est dit principal lorsqu’il est intègre et tous ses idéaux sont principaux.

Exemple 3.2.

1. Z est un anneau principal puisque ses sous-groupes sont monogènes, a fortiori ses idéaux.

2. Les idéaux de Z/nZ sont tous principaux (voir les exercices), mais Z/nZ n’est pas toujours
un anneau principal.

3. Un corps est un anneau principal puisqu’il est intègre et ne possède que les idéaux (0) et
(1).

Exercice 5. Montrer que Z[X] n’est pas principal.

Proposition 3.3. Si A est un anneau principal et I est un idéal non nul de A, alors I est
premier si et seulement s’il est maximal, si et seulement s’il est engendré par un élément
irréductible de A.
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Démonstration. En effet, un idéal premier est engendré par un élément premier, donc irréduc-
tible et le caractère principal de A donne que cet idéal est maximal. Enfin, on sait qu’un idéal
maximal est premier.

Théorème 3.4. Si A est principal alors A est factoriel.

Démonstration. Commençons par remarquer que A est intègre par définition. Ensuite toute
suite croissante d’idéaux de A est stationnaire. En effet, si (In)n∈N est une telle suite, il existe
(an)n∈N une suite d’éléments de A telle que pour tout n ∈ N, In = (an) et an+1 | an. La réunion
I des In est un idéal de A puisque la suite est croissante, qui est donc principal : I = (a) pour
un a ∈ A. Pour tout n ∈ N, on a (an) ⊂ (a) d’où a | an. Réciproquement, a ∈ ⋃

n∈N(an) donc il
existe n ∈ N tel que an | a et alors pour tout m ≥ n, on a (an) = (a).

Soit maintenant a ∈ A non nul, et montrons que a possède une décomposition en produits
d’irréductibles. Si a est inversible, le produit vide convient. Sinon a admet nécessairement un
diviseur irréductible. En effet, soit a lui-même est irréductible, soit a = d0 n’est pas irréductible
et il admet donc un diviseur d1 qui ne lui est pas associé. Si d1 n’est pas irréductible, on trouve
un diviseur d2 qui ne lui est pas associé, etc. On construit ainsi une suite croissante d’idéaux de
A, qui stationne à partir de l’idéal engendré par un élément irréductible p. On recommence avec
l’élément a/p, et à nouveau on construit une suite croissante d’idéaux (c’est-à-dire une suite
décroissante de diviseurs) qui doit stationner. Cela montre que a admet une décomposition en
produits d’irréductibles.

Pour montrer l’unicité d’une telle décomposition à l’ordre et à association près, il suffit de
montrer que A vérifie le lemme d’Euclide. Mais si p est un élément irréductible de A alors (p)
est un idéal premier de A d’après la Proposition 3.3.

Proposition 3.5 (Relation de Bézout). Supposons que A est principal et soit a, b ∈ A non
nuls. Alors il existe u, v ∈ A tels que au + bv = d, où d est un PGCD de a et b. En particulier,
a et b sont premiers entre eux si et seulement si (a) + (b) = A.

Démonstration. L’idéal (a, b) = (a) + (b) est principal puisque A est un anneau principal,
écrivons-le (d). En particulier, a ∈ (d) et b ∈ (d) donc d divise a et b. De plus, si c est un
diviseur commun à a et b, alors c divise d puisque d ∈ (a) + (b) est de la forme au + bv avec
u, v ∈ A. Ainsi, d est un diviseur commun à a et b maximal pour la relation de divisibilité, c’est
donc un PGCD de a et b.

4 Anneaux euclidiens
Définition 4.1. On dit que A est un anneau euclidien lorsqu’il est intègre et qu’il existe
une fonction φ : A \ {0} → N, appelée stathme, telle que pour tout a, b ∈ A avec b ̸= 0, il
existe q, r ∈ A tels que :

i) a = bq + r.

ii) r = 0 ou φ(r) < φ(b).

Les éléments q et r sont appelés quotient et reste de la division euclidienne de a par b.

Exemple 4.2.

1. L’anneau Z est euclidien pour le stathme valeur absolue.

2. Si K est un corps alors K[X] est euclidien pour le stathme degré (voir la feuille suivante).

4



3. Un corps est un anneau euclidien pour n’importe quel stathme.

4. Pour a, b ∈ Z/nZ avec b ̸= 0, on peut trouver q, r ∈ R tels que a = bq + r avec r = 0 ou
|r| < |b|. Quitte à prendre a, b ∈ {0, . . . , n−1} alors a = bq +r avec r = 0 ou φ(r) < φ(b),
avec φ(k) le représentant de k dans {0, . . . , n − 1}. Pourtant, Z/nZ n’est pas toujours
intègre, donc ce n’est pas toujours un anneau euclidien.

Remarque 4.3. !△ Les quotients et restes d’une division euclidienne n’ont pas de raison d’être
uniques. C’est le cas dans les anneaux K[X] avec K un corps (c’en est même un caractérisation,
voir les exercices), mais par exemple dans Z muni du stathme valeur absolue, on a 7 = 2.3+1 =
3.3 − 2. Dans ce cas précis on peut retrouver l’unicité en imposant la positivité du reste, mais
il n’y a pas de généralisation.

Théorème 4.4. Si A est euclidien alors A est principal.

Démonstration. C’est la démonstration usuelle dans Z : on prend I un idéal non nul et on
montre qu’il est engendré par un élément de stathme minimal.

Remarque 4.5. La réciproque est fausse. Par exemple, l’anneau Z
[

1+i
√

19
2

]
est principal et

non euclidien.

5 Autres classes d’anneaux
Dans cette section, on rassemble un peu de terminologie sur des classes plus générales

d’anneaux et on discute de leurs relations.

Définition 5.1. 1. On dit que A est noethérien lorsque toute suite croissante d’idéaux est
stationnaire.

2. On dit que A est à PGCD lorsque tout couple d’éléments non tous nuls admet un PGCD
dans A.

3. On dit que A est de Bézout lorsque pour tout a, b ∈ A, l’idéal (a, b) est principal.

4. On dit que A est un atomique lorsqu’il est intègre et vérifie la propriété E.

On a vu qu’un anneau factoriel est à PGCD. La réciproque est fausse (considérer par
exemple l’anneau des entiers algébriques, que l’on définira plus tard). De même, un anneau fac-
toriel n’est pas nécessairement noethérien, et en particulier il n’est pas nécessairement principal.

Dans la démonstration du fait qu’un anneau principal est factoriel, on a montré qu’un an-
neau principal est noethérien, ce qui a permis de montrer qu’il vérifie la propriété E, autrement
dit qu’il est atomique, et vérifie le lemme d’Euclide, ce qui a permis de montrer qu’il vérifie la
propriété U. On a également établi qu’un anneau principal est de Bézout.

!△ Un anneau noethérien vérifie la propriété E (procéder comme dans la démonstration du
Théorème 3.4) mais n’est pas nécessairement atomique car il n’est pas forcément intègre.
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6 Exercices
Exercice 6. Déterminer les idéaux de Z/nZ, avec n ≥ 2.

Exercice 7. Quels sont les éléments irréductibles de Z/nZ, pour n ≥ 2 ? On pourra oublier
la clause d’intégrité pour cet exercice. (Indication : Considérer le PGCD de n et a, où a est
irréductible.)

Exercice 8. Montrer que Z[i] = {a + ib | a, b ∈ Z} est un anneau et qu’il est euclidien pour le
stathme N : a + ib 7→ a2 + b2.

Exercice 9. Soit A l’anneau Z[i
√

5] = {a+ib
√

5 | a, b ∈ Z}. On définit N : a+ib
√

5 7→ a2+5b2.

1. Montrer que N(ab) = N(a)N(b) pour tout a, b ∈ A.

2. Déterminer A×.

3. En contemplant l’égalité 2 × 3 = (1 + i
√

5)(1 − i
√

5), montrer que A n’est pas factoriel.

Exercice 10. Montrer que A = C[X, Y ]/(X2 − Y 3) n’est pas factoriel. (Indication : Montrer
que y = Y est irréductible mais pas premier. On pourra admettre que C[X, Y ] est factoriel et
utiliser que tout élément de A s’écrit sous la forme A(y) + xB(y), avec A, B ∈ C[Y ] et où
x = X.)

Exercice 11. Montrer que si A est un anneau intègre, a, b ∈ A admettent un PPCM, alors ils
admettent un PGCD.

Remarque. La réciproque est fausse ! Par exemple dans C[X, Y, Z, T ]/(XY −ZT ), les éléments
X et Z ont pour PGCD 1 mais n’ont pas de PPCM.

Exercice 12. Montrer qu’un anneau atomique est factoriel si et seulement s’il vérifie le lemme
d’Euclide.

Exercice 13. Montrer qu’un anneau factoriel de Bézout est principal.

Exercice 14. Montrer que C0(I) n’est pas principal. (Indication : Considérer l’idéal des fonc-
tions s’annulant en un point donné.)

Exercice 15. Montrer que l’anneau Z[(Xn)n∈N] n’est pas noethérien.

Remarque. Cet anneau est cependant factoriel, comme on le verra dans la feuille suivante.

Exercice 16. Montrer que Z[X] est un anneau à PGCD qui n’est pas de Bézout. (On pourra
admettre que si A est factoriel alors A[X] l’est.)

Exercice 17. Montrer qu’un anneau commutatif A est noethérien si et seulement si tous ses
idéaux sont de type fini.

Exercice 18. Soit P1 = X2 + 1 ∈ Z[X] et P2 = 3 ∈ Z[X]. Montrer que pour tout n ∈ Z, P1(n)
et P2(n) sont premiers entre eux mais qu’il n’existe pas de polynômes U1, U2 ∈ Z[X] tels que
U1P1 + U2P2 = 1.

Exercice 19. Soit p un nombre premier. On note Z(p) l’ensemble{
a

pn
∈ Q | a ∈ Z, n ∈ N

}
.

Montrer que Z(p) est un anneau principal.
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Exercice 20. Soit A un anneau euclidien pour un stathme t.

1. Montrer que l’on peut supposer que t(ab) ≥ t(a) pour tout a, b ∈ A \ {0}, et que t(1) = 0.

2. Montrer qu’alors un élément u ∈ A est inversible si et seulement si t(u) = 0.

3. On suppose maintenant que pour tout a, b ∈ A avec b ̸= 0, le couple (q, r) de la division
euclidienne de a par b est unique.

(a) Montrer par l’absurde que pour tout a, b ∈ A \ {0} avec a ̸= −b, t(a + b) ≤
max(t(a), t(b)).

(b) En déduire que A× ∪ {0} est un corps.
(c) Supposons que A ne soit pas un corps. Justifier qu’il existe un élément x ∈ A tel que

t(x) soit strictement positif et minimal pour cette propriété.

(d) Montrer que tout élément de A admet une écriture unique sous la forme
n∑

k=0
akxk avec

les ak inversibles dans A. (On pourra s’inspirer de la démonstration de l’existence
et l’unicité de l’écriture d’un entier en base 10)

(e) En déduire que A est isomorphe à un anneau de polynômes sur un corps.
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