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Anneaux et éléments d’anneaux remarquables

Dans cette feuille, A désigne un anneau commutatif.

1 Divisibilité dans les anneaux

Définition 1.1. Soit a,b € A. On dit que a divise b, et on note a | b, lorsqu’il existe c € A
tel que b = ac. On dit que a et b sont associés lorsque a | b et b | a.

Exercice 1. Montrer que a divise b si et seulement si (b) C (a). En particulier, a et b sont
associés si et seulement (a) = (b).

Proposition 1.2. Si A est integre, alors a et b sont associés lorsqu’il existe u € A* tel que
b= ua.

Démonstration. Si b = ua avec u € A* alors a | b, et comme a = u~'b, b | a. Réciproquement, si
a|betb]|aalorsil existe ¢,d € A tels que b = ca et a = db, d’ou b = cdb. Ainsi, b(1 — cd) = 0.
Par intégrité, ou bien b = 0, auquel cas @ = 0 et on a bien b = la, ou bien (1 — cd) = 0,
autrement dit ¢ et d sont inversibles dans A. O]

Définition 1.3. Soit a € A. On dit que a est un diviseur de zéro lorsque a € A\ {0} il
existe b € A\ {0} tel que ab = 0. On dit que a est nilpotent lorsqu’il existe n € N* tel que
a™ = 0. On dit que a est un élément régulier lorsqu’il n’est ni nul, ni un diviseur de zéro.

Remarque 1.4. Les éléments réguliers sont exactement les éléments simplifiables de A,
c’est-a-dire ceux tels que ab = ac implique b = c.

Exercice 2. Soit n € N*. Déterminer les diviseurs de zéro et les éléments nilpotents de Z/nZ.

Définition 1.5. Supposons que A est intégre et soit a € A non nul. On dit que a est premier
lorsqu’il n’est pas inversible et pour tout b,c € A,

albc=alboualec

On dit que a est irréductible lorsque a n’est pas inversible et lorsque [’écriture a = be avec
b,c € A implique que b ou ¢ est inversible.

Exercice 3. Montrer qu’un élément premier est irréductible. Montrer que la réciproque n’est
pas toujours vraie.

Proposition 1.6. Supposons que A est intégre et soit a € A. Alors a est premier si et seulement
sia #0 et (a) est premier.

Définition 1.7. Soit a,b € A.



1. On dit que a et b admettent un PG CD (plus grand diviseur commun) dans A lorsque l’en-
semble {d € A | d|a,d| b} admet un mazimum pour la divisibilité. On note PGCD(a, b)
lidéal engendré par un tel PGCD.

2. On dit que a et b admettent un PPCM (plus petit commun multiple) dans A lorsque
lensemble {m € A | a | m,b | m} admet un minimum pour la divisibilité. On note
PPCM(a, b) l’idéal engendré par un tel PPCM.

3. On dit que a et b sont premiers entre eux lorsque 1 est un PGCD de a et b.

Remarque 1.8. /N Un PGCD ou un PPCM n’a pas de raison d’exister en général dans un
anneau, et lorsqu’il existe, il n’est unique qu’a association pres, ce qui justifie que les idéaux

PGCD(a,b) et PPCM(a, b) sont bien définis.

Exercice 4. Montrer que d est un PGCD de a et b si et seulement si (d) est un élément
manimal (pour Uinclusion) de {(c) | ¢ € A, (a) + (b) C (¢)}, et que m est un PPCM de a et b si
et seulement si (m) est un élément mazximal de {(n) | n € A, (n) C (a) N (b)}.

2 Anneaux factoriels

Définition 2.1. On dit que A est un anneau factoriel lorsque :
i) A est intégre.

i1) Tout élément non nul de A est associé a un produit d’éléments irréductibles (Propriété

iii) Toute factorisation en produit d’irréductibles est unique : Si [[i_ypi = Ilj=1q; avec
Pise s DrsQ1s---,qs € A drréductibles, alors r = s et il existe une permutation o € S,

telle que Vi € {1,...,r}, Ju; € A*,¢; = wipo;) (Propriété U).

Remarque 2.2. Les facteurs irréductibles d’'un élément non nul d’'un anneau factoriel sont
donc seulement définies a multiplication par un inversible pres.

Exemple 2.3.
1. Z est un anneau factoriel en vertu du théoreme fondamental de 'arithmétique.

2. Un corps est un anneau factoriel puisque tout élément non nul y est inversible, et donc
admet une décomposition comme produit vide d’irréductibles.

3. L’anneau A[X, X'/2 .. .] n’est pas factoriel car il ne vérifie pas la propriété E.
4. L’anneau Z[iv/5] n’est pas factoriel car il ne vérifie pas la propriété U (voir les exercices).

Proposition 2.4 (Lemme d’Euclide). Si A est factoriel, alors un élément est premier si et
seulement s’il est irréductible.

Démonstration. Un élément premier étant toujours irréductible, il s’agit de montrer la réci-
proque. Soit donc p € A un élément irréductible et a,b € A tels que p | ab. 1l existe donc
c € A tel que pc = ab. Puisque A est factoriel, a et b admettent une décomposition en produit
d’irréductibles, qui donne une telle décomposition pour ab. L'unicité de celle-ci implique que
p intervient dans la décomposition de a ou de b, d’ou p | a ou p | b, autrement dit, p est
premier. ]



Proposition 2.5 (Lemme de Gauss). Si A est factoriel et a,b,c € A sont tels que a | be et a
est premier avec b, alors a | c.

Démonstration. Par hypothese, il existe d € A tel que ad = bc. Si on écrit b = py...p, et
c=q...qs les décompositions en produits d’irréductibles de b et ¢ alors ad =py...p.q1 .. . qs,
qui est donc la décomposition en produit d’irréductibles de ad. Mais on peut également obtenir
celle-ci a partir de celles de a et de d, et la décomposition en produit d’irréductibles de a ne
contient aucun irréductible associé aux p; puisque a et b sont premiers entre eux. L’unicité de la
décomposition en produits d’irréductibles de ad donne que les facteurs irréductibles de a sont
associés a des ¢;, autrement dit, que a | c. n

Remarque 2.6. En fait, le lemme d’Euclide est un cas particulier du lemme de Gauss, car
un irréductible ne divise pas un élément donné de A si et seulement s’il est premier avec lui.

Proposition 2.7. Supposons que A est un anneau factoriel. Pour a,b € A non nuls, écrivons

T
a= ]
=1

et
r
=1

T
avec les p; irréductibles deux a deux mon associés, a;, 5; € N et u € A*. Alors Hpmm(ai’ﬂi)

i est
i=1

un PGCD de a et b et ler-nax(a“ﬂi) en est un PPCM.

=1

Proposition 2.8. Si A est factoriel et a,b € A sont non nuls, alors

PGCD(a, b)PPCM(a, b) = (ab).

3 Anneaux principaux

Définition 3.1. Un idéal de A est dit principal lorsqu’il est engendré par un élément. L’an-
neau A est dit principal lorsqu’il est intégre et tous ses idéaux sont principaur.

Exemple 3.2.
1. Z est un anneau principal puisque ses sous-groupes sont monogenes, a fortiori ses idéaux.

2. Lesidéaux de Z/nZ sont tous principaux (voir les exercices), mais Z/nZ n’est pas toujours
un anneau principal.

3. Un corps est un anneau principal puisqu’il est integre et ne possede que les idéaux (0) et

(1).
Exercice 5. Montrer que Z|X| n’est pas principal.

Proposition 3.3. Si A est un anneau principal et I est un idéal non nul de A, alors I est
premier si et seulement s’il est maximal, si et seulement s’il est engendré par un élément
irréductible de A.



Démonstration. En effet, un idéal premier est engendré par un élément premier, donc irréduc-
tible et le caractere principal de A donne que cet idéal est maximal. Enfin, on sait qu’un idéal
maximal est premier. O

Théoréme 3.4. Si A est principal alors A est factoriel.

Démonstration. Commencons par remarquer que A est integre par définition. Ensuite toute
suite croissante d’idéaux de A est stationnaire. En effet, si (I,,),en est une telle suite, il existe
(@n)nen une suite d’éléments de A telle que pour tout n € N, I, = (a,,) et a1 | a,. La réunion
I des I, est un idéal de A puisque la suite est croissante, qui est donc principal : I = (a) pour
un a € A. Pour tout n € N, on a (a,) C (a) d’ou a | a,. Réciproquement, a € U,cy(a,) donc il
existe n € N tel que a, | a et alors pour tout m > n, on a (a,) = (a).

Soit maintenant a € A non nul, et montrons que a posseéde une décomposition en produits
d’irréductibles. Si a est inversible, le produit vide convient. Sinon a admet nécessairement un
diviseur irréductible. En effet, soit a lui-méme est irréductible, soit a = dy n’est pas irréductible
et il admet donc un diviseur d; qui ne lui est pas associé. Si d; n’est pas irréductible, on trouve
un diviseur dy qui ne lui est pas associé, etc. On construit ainsi une suite croissante d’idéaux de
A, qui stationne a partir de I'idéal engendré par un élément irréductible p. On recommence avec
I'élément a/p, et a nouveau on construit une suite croissante d’idéaux (c’est-a-dire une suite
décroissante de diviseurs) qui doit stationner. Cela montre que a admet une décomposition en
produits d’irréductibles.

Pour montrer I'unicité d’une telle décomposition a l'ordre et a association pres, il suffit de
montrer que A vérifie le lemme d’Euclide. Mais si p est un élément irréductible de A alors (p)
est un idéal premier de A d’apres la Proposition 3.3. O

Proposition 3.5 (Relation de Bézout). Supposons que A est principal et soit a,b € A non
nuls. Alors il existe u,v € A tels que au+bv = d, ot d est un PGCD de a etb. En particulier,
a et b sont premiers entre eux si et seulement si (a) + (b) = A.

Démonstration. L’idéal (a,b) = (a) + (b) est principal puisque A est un anneau principal,
écrivons-le (d). En particulier, a € (d) et b € (d) donc d divise a et b. De plus, si ¢ est un
diviseur commun & a et b, alors ¢ divise d puisque d € (a) + (b) est de la forme au + bv avec
u,v € A. Ainsi, d est un diviseur commun a a et b maximal pour la relation de divisibilité, c’est

donc un PGCD de a et b. O

4 Anneaux euclidiens

Définition 4.1. On dit que A est un anneau euclidien lorsqu’il est intégre et qu’il existe
une fonction ¢ : A\ {0} — N, appelée stathme, telle que pour tout a,b € A avec b # 0, il
existe q,r € A tels que :

i) a=0bq+r.

it) r =10 ou p(r) < (b).
Les éléments q et r sont appelés quotient et reste de la division euclidienne de a par b.
Exemple 4.2.

1. L’anneau Z est euclidien pour le stathme valeur absolue.

2. Si K est un corps alors K[X] est euclidien pour le stathme degré (voir la feuille suivante).
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3. Un corps est un anneau euclidien pour n’importe quel stathme.

4. Pour @,b € Z/nZ avec b # 0, on peut trouver ¢,7 € R tels que a = bg + r avec r = 0 ou
7| < |b|. Quitte & prendre a,b € {0,...,n—1} alors @ = bg+7 avec ¥ = 0 ou () < ¢(b),
avec (k) le représentant de k dans {0,...,n — 1}. Pourtant, Z/nZ n’est pas toujours
integre, donc ce n’est pas toujours un anneau euclidien.

Remarque 4.3. /N Les quotients et restes d'une division euclidienne n’ont pas de raison d’étre
uniques. C’est le cas dans les anneaux K[X] avec K un corps (c’en est méme un caractérisation,
voir les exercices), mais par exemple dans Z muni du stathme valeur absolue, ona 7 =2.3+1 =
3.3 — 2. Dans ce cas précis on peut retrouver 'unicité en imposant la positivité du reste, mais
il n’y a pas de généralisation.

Théoréme 4.4. Si A est euclidien alors A est principal.

Démonstration. C’est la démonstration usuelle dans Z : on prend [ un idéal non nul et on
montre qu’il est engendré par un élément de stathme minimal. O

1+i\/ﬁ}
2

Remarque 4.5. La réciproque est fausse. Par exemple, 'anneau Z { est principal et

non euclidien.

5 Autres classes d’anneaux

Dans cette section, on rassemble un peu de terminologie sur des classes plus générales
d’anneaux et on discute de leurs relations.

Définition 5.1. 1. On dit que A est noethérien lorsque toute suite croissante d’idéaux est
stationnaire.

2. On dit que A est a PGCD lorsque tout couple d’éléments non tous nuls admet un PGCD
dans A.

3. On dit que A est de Bézout lorsque pour tout a,b € A, l"idéal (a,b) est principal.
4. On dit que A est un atomique lorsqu’il est intégre et vérifie la propriété E.

On a vu quun anneau factoriel est & PGCD. La réciproque est fausse (considérer par
exemple 'anneau des entiers algébriques, que I'on définira plus tard). De méme, un anneau fac-
toriel n’est pas nécessairement noethérien, et en particulier il n’est pas nécessairement principal.

Dans la démonstration du fait qu'un anneau principal est factoriel, on a montré qu'un an-
neau principal est noethérien, ce qui a permis de montrer qu’il vérifie la propriété E, autrement
dit qu’il est atomique, et vérifie le lemme d’Euclide, ce qui a permis de montrer qu’il vérifie la
propriété U. On a également établi qu'un anneau principal est de Bézout.

/N Un anneau noethérien vérifie la propriété E (procéder comme dans la démonstration du
Théoreme 3.4) mais n’est pas nécessairement atomique car il n’est pas forcément integre.



6 Exercices

Exercice 6. Déterminer les idéauz de Z/nZ, avec n > 2.

Exercice 7. Quels sont les éléments irréductibles de Z/nZ, pour n > 2 ¢ On pourra oublier
la clause d’intégrité pour cet exercice. (Indication : Considérer le PGCD de n et a, ou a est
irréductible.)

Exercice 8. Montrer que Z[i] = {a +1ib| a,b € Z} est un anneau et qu’il est euclidien pour le
stathme N : a + ib — a* + b?.

Exercice 9. Soit A l'anneau Z[l\/g] = {a+ibV/5 | a,b € Z}. On définit N : a+ib\/5 — a>45b.
1. Montrer que N(ab) = N(a)N(b) pour tout a,b € A.
2. Déterminer A*.
3. En contemplant I'égalité 2 x 3 = (14 iv/5)(1 — i\/5), montrer que A n'est pas factoriel.

Exercice 10. Montrer que A = C[X,Y]/(X? —Y?) n’est pas factoriel. (Indication : Montrer
que y =Y est irréductible mais pas premier. On pourra admettre que C[X,Y] est factoriel et

utiliser que tout élément de A s’écrit sous la forme A(y) + xB(y), avec A, B € C[Y] et ou
r=X.)

Exercice 11. Montrer que si A est un anneau intégre, a,b € A admettent un PPCM, alors ils
admettent un PGCD.

Remarque. La réciproque est fausse ! Par exemple dans C[X,Y, Z, T]/(XY — ZT), les éléments
X et Z ont pour PGCD 1 mais n’ont pas de PPCM.

Exercice 12. Montrer qu’un anneau atomique est factoriel si et seulement s’il vérifie le lemme

d’Fuclide.
Exercice 13. Montrer qu’un anneau factoriel de Bézout est principal.

Exercice 14. Montrer que C°(I) n'est pas principal. (Indication : Considérer l'idéal des fonc-
tions s’annulant en un point donné.)

Exercice 15. Montrer que l'anneau Z[(X,)nen] n'est pas noethérien.
Remarque. Cet anneau est cependant factoriel, comme on le verra dans la feuille suivante.

Exercice 16. Montrer que Z[X] est un anneau ¢ PGCD qui n’est pas de Bézout. (On pourra
admettre que si A est factoriel alors A[X| l'est.)

Exercice 17. Montrer qu’un anneau commutatif A est noethérien si et seulement si tous ses
idéaux sont de type fini.

Exercice 18. Soit P, = X*+1 € Z[X] et P, = 3 € Z[X]. Montrer que pour tout n € Z, Py(n)
et Py(n) sont premiers entre eur mais qu’il n’existe pas de polynomes Uy, Us € Z[X] tels que
Uy P+ UsP, = 1.

Exercice 19. Soit p un nombre premier. On note Z, l'ensemble

{;GQMLEZ,nGN}.

Montrer que Z, est un anneau principal.



Exercice 20. Soit A un anneau euclidien pour un stathme t.

1.
2.

Montrer que l'on peut supposer que t(ab) > t(a) pour tout a,b € A\ {0}, et que t(1) = 0.
Montrer qu’alors un élément u € A est inversible si et seulement si t(u) = 0.

On suppose maintenant que pour tout a,b € A avec b # 0, le couple (q,r) de la division
euclidienne de a par b est unique.

(a) Montrer par labsurde que pour tout a,b € A\ {0} avec a # —b, t(a +b) <
max(t(a),t(b)).

(b) En déduire que A* U {0} est un corps.

(c) Supposons que A ne soit pas un corps. Justifier qu’il existe un élément x € A tel que
t(z) soit strictement positif et minimal pour cette propriété.
n
(d) Montrer que tout élément de A admet une écriture unique sous la forme arz® avec

k=0
les ay, inversibles dans A. (On pourra s’inspirer de la démonstration de [’existence

et l'unicité de 'écriture d’un entier en base 10)

(e) En déduire que A est isomorphe a un anneau de polynomes sur un corps.



