
ENS Paris-Saclay 2025-2026 Préparation à l’agrégation
A. Bailleul Cours-TD d’anneaux et corps

Anneaux, idéaux, quotients et morphismes

Quelques références bibliographiques pour l’algèbre commutative :

- Cours d’algèbre, D. Perrin, Ellipses.

- Algèbre - Le grand combat, G. Berhuy, Calvage & Mounet.

- Algèbre, S. Lang, Dunod.

- Éléments de la théorie des anneaux : Anneaux commutatifs, J. Calais, Ellipses.

Les anneaux sont des structures mathématiques qui permettent notamment de généraliser les
principes arithmétiques de Z et la structure de fonctions régulières sur une variété (point de
départ de la géométrie algébrique).

1 Généralités sur les anneaux
Définition 1.1. Un anneau (associatif unitaire) est un quintuplet (A, +, ×, 0, 1) où A est un
ensemble et :

1. (A, +, 0) est un groupe abélien.

2. × : A × A → A est une loi de composition interne associative, d’élément neutre 1.

3. × est distributive à gauche et à droite sur + :

∀x, y, z ∈ A, x × (y + z) = x × y + x × z et (x + y) × z = x × z + y × z.

L’anneau est dit commutatif lorsque la loi × est commutative : ∀x, y ∈ A, x × y = y × x.
Un élément x ∈ A est dit inversible, et on note alors x ∈ A× lorsqu’il existe y ∈ A tel que
x × y = y × x = 1. On dit que A est un anneau à division lorsqu’il n’est pas réduit à {0} et
tout élément non nul est inversible. Enfin, on dit que c’est un corps lorsque c’est un anneau à
division commutatif.

Remarque 1.2.

1. Le second point peut se résumer en disant que (A, ×) est un monoïde associatif de neutre
1, et A est un anneau à division lorsque (A \ {0}, ×) est un groupe.

2. !△ On n’a pas précisé que 1 ̸= 0 dans la définition d’un anneau, afin de considérer
l’anneau nul comme un anneau. Cela nécessitera quelques précautions au moment de
parler d’anneaux intègres.
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3. Quand le contexte est clair, on parlera simplement de A comme d’un anneau, sans préciser
les lois et neutres, et on omettra le symbole × dans les calculs.

Exercice 1. Soit (A, +, ×, 0, 1) un anneau. Montrer que pour tout x ∈ A, 0 × x = 0 et
−1 × x = −x. Montrer que l’on n’a pas besoin de supposer (A, +) abélien dans la définition
d’un anneau.

Exemple 1.3.

1. (N, +, ×, 0, 1) n’est pas un anneau mais (Z, +, ×, 0, 1) est un anneau commutatif qui n’est
pas un corps.

2. Pour tout n ∈ N∗, (Z/nZ, +, ×, 0, 1) est un anneau commutatif.

3. Si A est un anneau alors pour tout n ≥ 1, (Mn(A), +, ×, 0, In) est un anneau. Il est non
commutatif si n ≥ 2 (et A est non nul).

4. Si A est un anneau et E un ensemble non vide alors AE = {f : E → A} est un anneau
pour l’addition et la multiplication des fonctions, de neutre additif la fonction nulle et
neutre multiplicatif la fonction constante égale à 1.

5. Si G est un groupe abélien alors (End(G), +, ◦, 0, idG) est un anneau.

6. Si I est un intervalle réel alors (C0(I), +, ×, 0, 1) est un anneau.

Définition 1.4. Soit A un anneau. Un sous-anneau de A est une partie B de A telle que
(B, +|B×B, ×|B×B, 0, 1) soit un anneau.

Exercice 2. Montrer que B est un sous-anneau de A si et seulement si 1 ∈ B, B est un
sous-groupe de (A, +) et B est stable par ×.

Exemple 1.5.

1. Z est un sous-anneau de R.

2. Les sous-groupes nZ de Z n’en sont pas des sous-anneaux pour n ̸= ±1.

La notion de sous-anneau n’est pas très importante (mais elle est au programme), car ce n’est
pas la bonne notion qui mène à celle d’anneau quotient. La bonne notion est celle d’idéal (de
« nombre idéal », concept inventé par Kummer pour démontrer le grand théorème de Fermat),
introduite par Dedekind dans les années 1870 pour étudier l’arithmétique des corps de nombres.

Définition 1.6. Soit A un anneau. Un idéal à gauche de A est une partie I telle que (I, +)
est un sous-groupe de (A, +) et I est absorbant à gauche pour ×, c’est-à-dire que ∀a ∈ A, ∀x ∈
I, ax ∈ I. Un idéal à droite est un sous-groupe absorbant à droite et un idéal bilatère (on dira
simplement idéal dans la suite) est un idéal à gauche et à droite.

Remarque 1.7.

1. Pour montrer que I ⊂ A est un idéal à gauche, il suffit donc de montrer que I ̸= ∅, ∀x, y ∈
I, x − y ∈ I et ∀a ∈ A, ∀x ∈ I, ax ∈ I. Si A est commutatif, les notions d’idéal à gauche
et d’idéal à droite coïncident.

2. D’après la définition d’un idéal I (à gauche ou à droite), on a I = A si et seulement si
1 ∈ I.
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Exemple 1.8.

1. Si A est un anneau, alors A et {0} sont des idéaux de A.

2. Pour tout n ∈ N, nZ est un idéal de Z, et tout idéal de Z est de cette forme.

3. Si K est un corps et F est un sous-espace vectoriel de Kn, alors {M ∈ Mn(K) | F ⊂
ker M} est un idéal à gauche de Mn(K).

Proposition 1.9. Soit A un anneau et (Ij)j∈J une famille d’idéaux à gauche (resp. à droite)
de A. Alors ⋂

j∈J

Ij

est un idéal à gauche (resp. à droite) de A.

Définition 1.10. Soit A un anneau et S ⊂ A. L’idéal engendré par S est

(S) =
⋂

I idéal de A
S⊂I

I.

C’est le plus petit (au sens de l’inclusion) idéal de A contenant S. Un idéal engendré par un
seul élément est dit principal.

Remarque 1.11. Quand S est un ensemble fini {a1, . . . , an} ⊂ A on note également (S) =
(a1, . . . , an).

Exercice 3. Soit S ⊂ A. Montrer que

(S) =
{

n∑
i=1

aisibi | n ∈ N, ∀i ∈ {1, . . . , n}, ai, bi ∈ A, si ∈ S

}
.

En particulier, si a ∈ A et A est commutatif alors (a) = {ax | x ∈ A} = aA.

Exercice 4. Montrer que, si A est commutatif, (a) = A si et seulement si a ∈ A×.

Proposition 1.12. Soit A un anneau, I et J des idéaux de A. Alors

(I, J) = {i + j | i ∈ I, J ∈ J} = I + J.

Exercice 5. Soit I et J des idéaux de A. Montrer que

IJ =
{

n∑
i=1

aibi | n ∈ N, ∀i ∈ {1, . . . , n}, ai ∈ I, bi ∈ J

}

est un idéal de A. Le comparer à I + J et I ∩ J .

Définition 1.13. Soit (A, +A, ×A, 0A, 1A) et (B, +B, ×B, 0B, 1B). Un morphisme d’anneaux
entre A et B est une application f : A → B telle que :

1. f(1A) = 1B.

2. ∀x, y ∈ A, f(x +A y) = f(x) +B f(y).

3. ∀x, y ∈ A, f(x ×A y) = f(x) ×B f(y).
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On dit que f est un isomorphisme lorsqu’il est bijectif, un endomorphisme lorsque B = A
et un automorphisme lorsque c’est un endomorphisme bijectif.

Exemple 1.14.

1. Pour tout anneau A, idA est un automorphisme de A.

2. La conjugaison complexe est un automorphisme de C. Y en a-t-il d’autres (vous avez 4h) ?

3. Si A est un anneau et a ∈ A alors f 7→ f(a) est un morphisme d’anneaux de AA dans A.

4. !△ La fonction nulle d’un anneau A vers un anneau B n’est pas un morphisme d’anneaux
(sauf si B est nul).

Notation. On écrira A ≃ B lorsqu’il existe un isomorphisme entre A et B. La proposition
suivante montre qu’il s’agit d’une relation d’équivalence.

Proposition 1.15. La composée de morphismes d’anneaux est un morphisme d’anneaux. Si
f : A → B est un isomorphisme d’anneaux alors f−1 : B → A en est un également.

Proposition 1.16. L’image réciproque d’un idéal par un morphisme d’anneaux est un idéal.

!△ Ce n’est pas forcément vrai de l’image directe, voir les exercices.

Définition 1.17. Soit A et B des anneaux et f : A → B un morphisme d’anneaux. Le noyau
de f est

ker f = {a ∈ A | f(a) = 0B}

et son image est
im f = {b ∈ B | ∃a ∈ A, f(a) = b}.

Proposition 1.18. Soit A et B des anneaux et f : A → B un morphisme d’anneaux. Alors
ker f est un idéal de A et im f est un sous-anneau de B. De plus, f est injectif si et seulement
si ker f = {0A} et f est surjectif si et seulement si im f = B.

Définition 1.19. Soit (A, +A, ×A, 0, 1) un anneau. Une A-algèbre (unitaire associative) est
un anneau (K, +K , ×K , 0K , 1K) muni d’une multiplication externe . : A × K → K telle que :

1. ∀x ∈ K, 1.x = x.

2. . est distributive sur +K : ∀a ∈ A, ∀x, y ∈ K, a.(x +K y) = a.x +K a.y.

3. . est distributive sur +A : ∀a, b ∈ A, ∀x ∈ K, (a +A b).x = a.x +A b.x.

4. . est compatible avec ×K : ∀a ∈ A, ∀x, y ∈ K, a.(x ×K y) = (a.x) ×K y = x ×K (a.y).

5. . est compatible avec ×A : ∀a, b ∈ A, ∀x ∈ K, (a ×A b).x = a.(b.x).

On dira que K est un algèbre à division lorsque c’est un anneau à division qui est une
A-algèbre.

Remarque 1.20. De manière équivalente, une A-algèbre est un anneau K muni d’une struc-
ture de A-module telle que l’application qui à un élément a ∈ A associe la multiplication par
a dans K est un morphisme d’anneaux de A dans l’anneau des endomorphismes A-linéaires de
K, EndA(K).
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Exemple 1.21.

1. Tout anneau est une Z-algèbre.

2. Si n ∈ N∗, tout anneau A vérifiant ∀a ∈ A, na = 0 est une Z/nZ-algèbre.

3. Si A est un anneau, alors Mn(A) est une A-algèbre.

4. Si A est un anneau et f : A → B est un morphisme d’anneaux, alors B est muni d’une
structure de A-algèbre via ∀a ∈ A, ∀b ∈ B, a.b = f(a)×B b. En particulier, si A ⊂ B alors
B est une A-algèbre.

2 Anneaux de polynômes
Dans cette section, A est un anneau commutatif.

Définition 2.1. On définit l’anneau des polynômes en une variable sur A, noté A[X],
comme l’ensemble des applications f : N → A à support fini, c’est-à-dire telles que f(n) = 0
pour tout n ∈ N sauf au plus un nombre fini. On le munit des opérations suivantes :

1. Si f, g : N → A alors ∀n ∈ N, (f + g)(n) = f(n) + g(n).

2. Si f, g : N → A alors ∀n ∈ N, (f × g)(n) = ∑n
k=0 f(k)g(n − k) = ∑

a,b∈N
a+b=n

f(a)g(b).

De plus, on note X l’élément δ1 : N → A tel que δ1(1) = 1A et δ1(n) = 0A pour tout n ∈ N\{1}.

Remarque 2.2.

1. Pour tout n ∈ N, on a Xn = δn.

2. La lettre X n’a bien sûr rien de canonique, et on retrouve souvent A[Y ], A[Xn] ou A[T ].

Proposition 2.3. Muni des opérations ci-dessus, A[X] est un anneau, de neutre additif la
fonction nulle, et de neutre multiplicatif l’application δ0. De plus, A se plonge (en tant qu’an-
neau) dans A[X] via a 7→ a.X0. Tout élément non nul de A[X] s’écrit de manière unique sous
la forme

n∑
i=0

aiX
i,

avec n ∈ N, ai ∈ A et an ̸= 0.

Remarque 2.4. Formellement, (A[X], +) est le groupe abélien libre ⊕n∈N A.Xn ≃ A(N), et la
multiplication en fait une algèbre graduée.

Théorème 2.5. L’injection a 7→ a.X0 de A dans A[X] fait de A[X] l’algèbre libre sur A, au
sens où elle vérifie la propriété universelle suivante : pour toute A-algèbre B et tout élément
b ∈ B, il existe un unique morphisme de A-algèbres φ : A[X] → B tel que φ(X) = b.

Autrement dit, on peut toujours « évaluer un polynôme en b ».
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3 Anneaux quotients
Théorème 3.1. Soit A un anneau et I un idéal de A. On définit la relation d’équivalence ∼
sur A par

x ∼ y ⇔ x − y ∈ I.

Notons alors x + I la classe d’équivalence de x ∈ A et A/I = {x + I | x ∈ A}. L’ensemble
quotient A/I peut être muni d’une structure d’anneau, telle que la projection A → A/I soit un
morphisme d’anneaux, de la manière suivante :

1. Pour a, b ∈ A, on définit (a + I) +A/I (b + I) = (a + b) + I.

2. Pour a, b ∈ A, on définit (a + I) ×A/I (b + I) = (a × b) + I.

3. Le neutre additif est I et le neutre multiplicatif est 1 + I.

Démonstration. Il s’agit de vérifier que les opérations sont bien définies. Si a′ + I = a + I et
b′ + I = b + I alors il existe i1, i2 ∈ I tels que a′ = a + i1 et b′ = b + i2 et alors

(a′ + b′) + I = (a + b + i1 + i2) + I = (a + b) + I

car I est un sous-groupe de (A, +) et

(a′ × b′) + I = ((a + i1) × (b + i2)) + I = (ab + ai2 + i1b + i1i2) + I = (a × b) + I

car I est absorbant à gauche et à droite.

Remarque 3.2. Si l’on note x la classe d’équivalence de x, les opérations deviennent sim-
plement a + b = a + b et a × b = a × b, le neutre additif est 0 et le neutre multiplicatif est
1.

Exemple 3.3.

1. Pour tout anneau A, A/{0} ≃ A et A/A ≃ {0}.

2. On retrouve la structure d’anneau sur Z/nZ que l’on connaît bien.

3. Si A est un anneau, alors A[X]/(X) ≃ A.

Théorème 3.4 (Propriété universelle du quotient). Soit f : A → B un morphisme d’anneaux.
Pour qu’il existe un morphisme d’anneaux f̃ : A/I → B tel que f = f̃ ◦ πI , il faut et il suffit
que I ⊂ ker f . De plus, f̃ est unique. Autrement dit, le diagramme suivant commute :

A

A/I

B
f

πI
∃!f̃

Corollaire 3.5 (Premier théorème d’isomorphisme). Soit f : A → B un morphisme d’anneaux.
Alors

A/ ker f ≃ im f.
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Proposition 3.6. Soit I un idéal de A. Les idéaux de A/I sont les J/I, avec J idéal de A
contenant I.

Définition 3.7. Soit A un anneau et I un idéal de A. On dit que I est :

1. Un idéal premier lorsque I ̸= A et ∀a, b ∈ A, ab ∈ I ⇒ a ∈ I ou b ∈ I.

2. Un idéal maximal lorsque I ̸= A et si J est un idéal de A tel que I ⊂ J alors J = I ou
J = A.

Exercice 6. Montrer que l’image réciproque d’un idéal premier par un morphisme d’anneaux
est un idéal premier. En est-il de même de l’image réciproque d’un idéal maximal ?

Définition 3.8. Un anneau intègre est un anneau commutatif non nul A qui vérifie la règle
du produit nul : ∀x, y ∈ A, xy = 0 ⇒ x = 0 ou y = 0.

Exemple 3.9.

1. Z est un anneau intègre.

2. Z/4Z n’est pas un anneau intègre.

Proposition 3.10. Soit A un anneau commutatif et I un idéal de A. Alors

1. I est premier si et seulement si A/I est intègre.

2. I est maximal si et seulement si A/I est un corps.

Corollaire 3.11. Tout idéal maximal d’un anneau commutatif est premier.

Exercice 7. Donner un exemple d’idéal premier non maximal.

Théorème 3.12 (Krull). Tout idéal strict d’un anneau commutatif A est inclus dans un idéal
maximal.

Remarque 3.13. Cet énoncé est équivalent à l’axiome du choix ! Il est donc non constructif.

Corollaire 3.14. Soit A un anneau commutatif et x ∈ A. Alors x est inversible si et seulement
si x n’appartient à aucun idéal maximal de A.

Définition 3.15. Soit A un anneau. La caractéristique de A est

car A =
{

0 si ∀n ∈ N∗, n1A ̸= 0
min{n ∈ N∗ | n1A = 0} sinon.

Remarque 3.16. Autrement dit, si on considère l’unique morphisme d’anneaux f : Z → A
alors la caractéristique de A est l’entier naturel n tel que ker f = nZ.

Exemple 3.17.

1. Pour tout n ∈ N∗, Z/nZ est de caractéristique n.

2. Z,Q,R sont de caractéristique 0.

3. Si A est de caractéristique n ∈ N alors A[X] est de caractéristique n.

Exercice 8. Montrer que si B est un quotient de A, alors car(B) | car(A).

Proposition 3.18. La caractéristique d’un anneau intègre est 0 ou un nombre premier.

Exercice 9. Montrer qu’un anneau commutatif de caractéristique un nombre premier n’est pas
nécessairement intègre.
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4 Exercices
Exercice 10. Donner un exemple d’anneaux A et B non isomorphes tels que les groupes (A, +)
et (B, +) soient isomorphes. Faire de même avec (A×, ×) et (B×, ×) isomorphes.

Exercice 11. Montrer que l’image d’un idéal par un morphisme d’anneaux n’est pas nécessai-
rement un idéal. Quelle condition ajouter sur le morphisme pour que ce soit le cas ? Faire de
même avec l’image réciproque d’un idéal maximal.

Exercice 12. Soit A un anneau commutatif et I1, I2 des idéaux de A. Montrer que I1 ∪ I2 est
un idéal de A si et seulement si I1 ⊂ I2 ou I2 ⊂ I1.

Exercice 13. 1. On définit les lois + et × sur R2 par

(a, b) + (c, d) = (a + c, b + d)

et
(a, b) × (c, d) = (ac, bd).

Montrer que ces lois munissent R2 d’une structure d’anneau. Est-il intègre ?

2. On définit les lois ⊕ et ⊗ sur R2 par

(a, b) ⊕ (c, d) = (a + c, b + d)

et
(a, b) ⊗ (c, d) = (ac − bd, ad + bc).

Montrer que ces lois munissent R2 d’une structure de corps.

Exercice 14. Soit A un anneau. Montrer que x, y ∈ A commutent si et seulement si pour tout

n ∈ N, (x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

Exercice 15. Déterminer l’ensemble des automorphismes de Q, et de R.

Exercice 16. Déterminer la caractéristique des anneaux suivants :

1. Z/mZ × Z/nZ avec m, n ∈ N∗.

2. ∏n≥2 Z/nZ.

3. End(G) avec G un groupe abélien.

Exercice 17. 1. Montrer qu’un anneau intègre fini est un corps.

2. Soit K un corps. Montrer qu’une K-algèbre intègre de dimension finie est une algèbre à
division.

3. Montrer qu’un anneau intègre est un corps si et seulement s’il n’admet qu’un nombre fini
d’idéaux.

Exercice 18. Soit A un anneau, I, J des idéaux de A avec I ⊂ J . Montrer que (A/I)/(J/I) ≃
A/J .
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Exercice 19. Soit n ∈ N∗ et P ∈ Z[X]. Montrer que

Z[X]/(P, n) ≃ (Z[X]/(P ))/(n) ≃ Z/nZ[X]/(P ).

Exercice 20. Soit A un anneau commutatif. On dit que les idéaux I et J sont comaximaux
lorsque I + J = A.

1. Montrer que si I et J sont comaximaux, alors I ∩ J = IJ .

2. En déduire le théorème chinois : A/IJ ≃ A/I × A/J .

3. Montrer que R[X]/(X4 − 1) ≃ R2 × C.

Exercice 21. Soit A un anneau commutatif. On dit qu’il est local lorsqu’il admet un seul idéal
maximal.

1. Montrer que A est local si et seulement si l’ensemble de ses éléments non inversibles est
un idéal et que, dans ce cas, cet idéal est l’unique idéal maximal de A.

2. Montrer que A est local si et seulement pour tout x ∈ A, x ou 1 − x est inversible.

3. Montrer que les seuls idempotents d’un anneau local sont 0 et 1.

4. Soit p un nombre premier et n ∈ N∗. Montrer que Z/pnZ est local.

5. Soit K un corps et n ∈ N∗. Montrer que K[X]/(Xn) est local.

Exercice 22. Soit I un intervalle de R.

1. Est-ce que l’anneau C0(I) est intègre ?

2. Dans le cas où I est un segment, montrer que ses idéaux maximaux sont les V (x) = {f ∈
C0(I) | f(x) = 0} où x ∈ I. (Indication : Partant d’un idéal inclus dans aucun V (x),
obtenir un recouvrement de [0, 1] par des ouverts n’admettant pas de sous-recouvrement
fini.).

3. Montrer que C0(R) admet des idéaux maximaux différent des V (x) avec x ∈ R. (Indica-
tion : Penser aux fonctions à support compact.)

Exercice 23. Soit Ω un ouvert connexe non vide de C. Montrer que l’anneau Hol(Ω) des
fonctions holomorphes sur Ω est intègre. Est-ce un corps ?

Exercice 24. Soit E un ensemble.

1. Montrer que (P(E), ∆, ∩) est un anneau (où A∆B = (A∪B)\ (A∩B) est la différence
symétrique).

2. Montrer que, quand E est fini, les idéaux de P(E) sont exactement les P(F ) avec F ⊂ E.

3. Trouver un idéal de P(N) qui ne soit pas de la forme P(F ) avec F ⊂ N.

Exercice 25. On définit les lois ⊕ et ⊗ sur R ∪ {−∞} par

x ⊕ y = max(x, y)

et
x ⊗ y = x + y,

avec la convention −∞ + a = −∞ pour tout a ∈ R ∪ {−∞}.
Est-ce que ces lois permettent de munir R d’une structure d’anneau ?
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Exercice 26. Notons H =
{(

α −β
β α

)
| α, β ∈ C

}
.

1. Montrer que H est une R-algèbre de dimension 4. On l’appelle l’algèbre des quater-
nions.

2. Notons 1 = I2, i =
(

i 0
0 −i

)
, j =

(
0 −1
1 0

)
et k =

(
0 −i

−i 0

)
. Vérifier que le sous-groupe

de H× engendré par i, j et k est isomorphe à H8.

3. Si q = a1 + bi + cj + dk, on note q = a1 − bi − cj − dk et N(q) = qq. Montrer que H est
une algèbre à division non commutative.

Exercice 27. Soit A et B deux anneaux commutatifs. Montrer que les idéaux de A × B sont
exactement les I × J avec I idéal de A et J idéal de B.
Exercice 28. Soit A un anneau et x ∈ A un élément nilpotent. Montrer que 1 − x ∈ A×.
Exercice 29. Soit A un anneau commutatif et I un idéal de A. On appelle radical de I
l’ensemble √

I = {x ∈ A | ∃n ∈ N, xn ∈ I}.

1. Montrer que
√

I est un idéal de A.

2. On note Nil(A) =
√

{0} le nilradical de A. Montrer que A/Nil(A) est un anneau réduit,
c’est-à-dire Nil(A/Nil(A)) = {0}.

3. Montrer que pour tout idéal premier P de A, on a Nil(A) ⊂ P .

4. On appelle radical de Jacobson de A l’intersection Jac(A) des idéaux maximaux de A.
Montrer que Nil(A) ⊂ Jac(A).

5. Montrer que pour tout x ∈ A, x ∈ Jac(A) si et seulement si pour tout a ∈ A, 1 + ax est
inversible.

6. En déduire une autre démonstration du fait que Nil(A) ⊂ Jac(A).
Remarque. On montre, grâce à l’axiome du choix, qu’en fait Nil(A) est l’intersection des
idéaux premiers de A.
Exercice 30. Soit A un anneau commutatif. On note Spec(A) l’ensemble des idéaux premiers
de A. Pour tout idéal I de A, on définit V (I) = {p ∈ Spec(A) | I ⊂ p}.

1. Montrer que les V (I) sont les fermés d’une topologie non séparée sur Spec(A).

2. Montrer que si A est intègre alors {(0)} est dense dans Spec(A).

3. Montrer qu’un morphisme d’anneaux f : A → B induit une application continue f̃ :
Spec(B) → Spec(A).

Exercice 31. Soit A un anneau intègre. On définit l’anneau des séries formelles A[[X]]
sur A comme l’ensemble des sommes formelles ∑n∈N anXn avec pour tout n ∈ N, an ∈ A, muni
de l’addition terme à terme et de la multiplication correspondant au produit de Cauchy. On
admettra qu’il s’agit d’une A-algèbre.

1. Montrer que A[[X]] est un anneau intègre.

2. Déterminer A[[X]]×.
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