Examen du vendredi 15 janvier 2021

Dans tout le sujet R désigne un anneau commutatif unitaire.

Le sujet est long afin de couvrir tout le cours, il n'est pas nécessaire d'aborder tous les exercices pour avoir une bonne note.

1. Exemples et contre-exemples

Pour chacune des questions suivantes, donner un exemple vérifiant la propriété donnée (en le justifiant).

- **1.** Un anneau R, et une suite exacte $0 \to U \to V \to W \to 0$ de R-modules tels que V n'est pas isomorphe à $U \oplus W$.
 - **2.** Un anneau R, et deux R-modules non nuls M et N tels que $M \otimes_R N = 0$.
 - **3.** Un anneau R, et un R-module M qui n'est pas plat.
 - **4.** Un anneau R, et un R-module M qui est projectif mais pas libre.

2. Questions de platitude

- **1.** Soit M et N deux R-modules. Montrer que $M \oplus N$ est plat si et seulement si M et N sont plats.
 - **2.** Soit I un idéal de R. Montrer que si R/I est plat sur R, alors $I = I^2$.
- **3.** Soit I un idéal de type fini d'un anneau R, tel que $I = I^2$. Montrer qu'il existe $e \in I$ idempotent (c'est-à-dire $e^2 = e$) tel que e engendre I. Indication : on pourra chercher un $e \in I$ tel que (1 e)I = 0.
- **4.** Soit e un élément idempotent de R. Montrer que R est isomorphe à $R/(e) \times R/(1-e)$.
- **5.** On suppose que R est de la forme $R_1 \times R_2$, où R_1 et R_2 sont deux anneaux. Montrer que R_1 et R_2 sont des R-modules plats (où R_i est un R-module via la projection canonique $R \to R_i$).
- **6.** On suppose encore $R = R_1 \times R_2$. Montrer que tout R-module est plat si et seulement si tout R_1 -module est plat et tout R_2 -module est plat.
 - 7. Montrer que si R est un produit fini de corps, tout R-module est plat.
- **8.** On suppose que R un anneau noethérien, tel que tout R-module est plat. Montrer que R est un produit fini de corps.

3. Sous-modules isomorphes

- **1.** Soit P le \mathbb{Z} -module $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Soit $M = 2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ et $N = \mathbb{Z} \times \{0\}$ des sous-modules de P. Montrer que M et N ne sont pas isomorphes, et que P/M et P/N sont isomorphes.
- **2.** On suppose maintenant que R est un anneau principal. Soit $r \geq 1$ un entier, et M et N deux sous-modules de R^r . Montrer qu'il existe un automorphisme f de R^r tel que f(M) = N si et seulement si R^r/M et R^r/N sont des R-modules isomorphes.

4. SATURATION ET LOCALISATION

On dit qu'une partie multiplicative T de R est saturée si T vérifie la propriété suivante : si a et b sont dans R et $ab \in T$, alors $a \in T$ et $b \in T$.

- **1.** Soit S une partie multiplicative de R. On note $\hat{S} = \{a \in R, \exists b \in R, ab \in S\}$. Montrer que \hat{S} est une partie multiplicative saturée de R contenant S.
- 2. Montrer que \hat{S} est l'ensemble des éléments de R qui deviennent inversibles dans $S^{-1}R$.
- **3.** Montrer que pour tout R-module M, on a une application canonique $u: S^{-1}M \to \hat{S}^{-1}M$ qui est bijective.

5. Autour de la torsion

Dans tout cet exercice R est un anneau intègre, et K désigne son corps des fractions. Les questions 2 à 6 sont indépendantes.

- Si M est un R-module, on rappelle qu'on note M_{tor} le sous-module $\{x \in M, \exists a \in R, a \neq 0, ax = 0\}$. On dit que M est sans torsion si $M_{tor} = 0$.
- **1.** Montrer que M_{tor} est le noyau de l'application naturelle $M \to M \otimes_R K$. Donner un isomorphisme entre $M \otimes K$ et $(M/M_{tor}) \otimes K$.
- Si M est un R-module de type fini, on appelle rang généralisé de M, et on note $\operatorname{rg}(M) = \dim_K(K \otimes_R M)$.
- **2.** Montrer que si M est un R-module de type fini contenant une famille libre de cardinal n, alors $\operatorname{rg}(M) \geq n$.
- **3.** Montrer que si l'on a une suite exacte $0 \to M \to N \to P \to 0$ de R-modules de type fini, alors rg(N) = rg(M) + rg(P).
- 4. Montrer qu'un R-module M de type fini sans torsion est isomorphe à un sousmodule de $R^{\operatorname{rg}(M)}$.
- **5.** Montrer que si M et N sont deux R-modules de type fini, et $x \in M$ et $y \in N$ sont tels que $x \otimes y = 0$ dans $M \otimes_R N$, alors $x \in M_{tor}$ ou $y \in N_{tor}$.
- **6.** Soit M un R-module de type fini sans torsion, tel que $\operatorname{rg}(M) = 1$. Soit $u \in \operatorname{End}_R(M)$. Montrer qu'il existe $a \in K$ tel que u est la multiplication par a, et que a est entier sur R.

6. Normalisation de Noether

Pour chacun des anneaux R suivants, trouver un $n \geq 0$ et des éléments t_1, \ldots, t_n dans R qui sont algébriquement indépendants sur \mathbb{C} et tels que R est fini sur $\mathbb{C}[t_1, \ldots, t_n]$.

- **1.** $R = \mathbb{C}[X, Y]/(XY 1)$
- $\mathbf{2.}\ R = \mathbb{C}[X,Y,Z]/(XZ)$