TD 6 : Formes quadratiques sur \mathbb{R} et \mathbb{C}

Exercice 1 — Déterminer la signature et le rang des formes quadratiques réelles suivantes :

- 1. $f(x, y, z) = 2x^2 2y^2 6z^2 + 3xy 4xz + 7yz$.
- **2.** $f(A) = \text{Tr}(A^2)$ pour $A \in M_n(\mathbb{R})$.
- **3.** $f(A) = \text{Tr}(A)^2$ pour $A \in M_n(\mathbb{R})$.
- **4.** $f(A) = \operatorname{Tr}({}^t A A)$ pour $A \in M_n(\mathbb{R})$.

Pour chacun des trois derniers exemples, donner un sous-espace de dimension maximale sur lequel f est définie négative, et un sous-espace de dimension maximale sur lequel f est définie positive.

Exercice 2 — [Inégalité de Cauchy-Schwarz]

Soit $q: E \to \mathbb{R}$ une forme quadratique réelle positive. On note φ la forme bilinéaire symétrique associée.

- **1.** Montrer que pour tout (x, y) de $E \times E$, $\varphi(x, y)^2 \le q(x)q(y)$. Indication: considérer le polynôme $t \mapsto q(x + ty)$.
- **2.** Dans cette question, on suppose de plus q définie. Montrer que l'égalité n'est réalisée que si x et y sont proportionnels.
 - **3.** Montrer que ker(q) = C(q).

Exercice 3 — Soit q une forme quadratique réelle.

1. Montrer que q est anisotrope si et seulement si q est définie positive ou définie négative.

Indication : si x et y sont tels que q(x) < 0 et q(y) > 0, que peut-on dire de $t \mapsto q(x+ty)$?

2. Montrer que $\ker(q) = C(q)$ si et seulement si q est positive ou négative.

Exercice 4 — [Autour de la décomposition polaire]

- **1.** Soit A, B, C dans $S_n^{++}(\mathbb{R})$ telles que $A = B^2 = C^2$. Montrer que B = C.
- **2.** En déduire l'unicité dans la décomposition polaire : Soit A dans $GL_n(\mathbb{R})$. Montrer qu'il existe une unique matrice S symétrique définie positive et une unique matrice Ω dans $O_n(\mathbb{R})$ telles que $A = S\Omega$.

- **3.** Montrer que $O_n(\mathbb{R})$ est un sous-groupe compact maximal de $\mathrm{GL}_n(\mathbb{R})$ (c'est-à-dire : si K est un sous-groupe compact tel que $O_n(\mathbb{R}) \subset K$, alors $K = O_n(\mathbb{R})$).
- **4.** Montrer que toute matrice A de $M_n(\mathbb{R})$ s'écrit $S\Omega$ avec Ω une matrice orthogonale et S une matrice symétrique positive. (On pourra utiliser la densité de $\mathrm{GL}_n(\mathbb{R})$ dans $M_n(\mathbb{R})$.) Montrer par un exemple que Ω et S ne sont pas uniques en général.
- **Exercice 5** Soit $A = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \in M_2(\mathbb{C})$. Vérifier que A est symétrique, et non diagonalisable. Quelle étape de la preuve de la diagonalisabilité des matrices réelles symétriques ne s'applique pas ici?

Exercice 6 — [Signature et mineurs principaux]

Soit E un \mathbb{R} -espace vectoriel de dimension n et $e = (e_1, \ldots, e_n)$ une base de E. Soit q une forme quadratique sur E, de matrice M dans la base e. Pour $1 \le k \le n$ on note $\Delta_k = \det((m_{i,j})_{i,j \le k})$; les Δ_k sont les mineurs principaux de M.

- **1.** On suppose que $\Delta_{n-1} \neq 0$. Montrer qu'il existe $\alpha_1, \ldots, \alpha_{n-1}$ dans \mathbb{R} tels que $u_n = e_n \sum_{i < n} \alpha_i e_i$ est q-orthogonal à e_1, \ldots, e_{n-1} .
- **2.** On suppose que $\Delta_{n-1} \neq 0$ et on note (r, s) la signature de la restriction de q à $\text{Vect}(e_1, \ldots, e_{n-1})$. Montrer que :
 - **a.** si $\Delta_n = 0$, q est de signature (r, s),
 - **b.** si Δ_n est de même signe que Δ_{n-1} , q est de signature (r+1,s),
 - **c.** si Δ_n est de signe opposé à Δ_{n-1} , q est de signature (r, s+1).
- **3.** On suppose que $\Delta_i \neq 0$ pour tout $1 \leq i \leq n$. Montrer que q est de signature (n-s,s) où s est le nombre de changements de signe dans la suite $(1,\Delta_1,\Delta_2,\ldots,\Delta_n)$.

Exercice 7 — [Signature d'une forme quadratique sur un corps fini]

Soit p un nombre premier différent de 2 et $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ le corps fini à p éléments. Soit $\alpha\in\mathbb{F}_p^\times$ qui n'est pas un carré.

1. Montrer que $\forall a, b \in \mathbb{F}_p^{\times}$, l'équation $ax^2 + by^2 = 1$ a toujours des solutions dans \mathbb{F}_p .

Indication: Il y a exactement $\frac{p+1}{2}$ carrés dans \mathbb{F}_p .

- **2.** Montrer que toute forme quadratique non dégénérée sur un \mathbb{F}_p -espace vectoriel de dimension 2 est isomorphe à une forme quadratique donnée par la matrice I_2 ou par $\mathrm{Diag}(1,\alpha)$.
- **3.** Montrer que toute forme quadratique non dégénérée sur un \mathbb{F}_p -espace vectoriel de dimension n est isomorphe à une forme quadratique donnée par la matrice I_n ou $\mathrm{Diag}(1,...1,\alpha)$.