TD3: Produit tensoriel

Dans toute cette feuille on fixe un corps k. Tous les espaces vectoriels considérés sont sur k et de dimension finie.

Exercice 1 — Soit $A \in M_{n,r}(k)$ et $B \in M_{m,s}(k)$ deux matrices, on note $(a_{i,j})$ les coefficients de A. On appelle produit de Kronecker de A et B, et on note $A \otimes B$, la matrice par blocs dont les blocs sont les $a_{i,j}B$ (de sorte que $A \otimes B \in M_{nm,rs}(k)$).

- **1.** Soit $u: E \to E'$ et $v: F \to F'$ des applications linéaires. On note $\mathbf{e} = (e_i)_i$ (respectivement $\mathbf{e}', \mathbf{f}, \mathbf{f}'$) une base de E (respectivement de E', F, F'). On suppose que $A = \operatorname{Mat}_{\mathbf{e}, \mathbf{e}'}(u)$ et $B = \operatorname{Mat}_{\mathbf{f}, \mathbf{f}'}(v)$. Donner des bases de $E \otimes F$ et $E' \otimes F'$ telles que la matrice de $u \otimes v$ dans ces bases soit $A \otimes B$. Donner des bases dans lesquelles la matrice de $u \otimes v$ est $B \otimes A$.
- **2.** Montrer que l'application linéaire $\operatorname{Hom}(E,E')\otimes\operatorname{Hom}(F,F')\to\operatorname{Hom}(E\otimes F,E'\otimes F')$ donnée par $u\otimes v\mapsto u\otimes v$ est bijective.

On suppose maintenant E = E' et F = F'.

- **3.** Retrouver que $tr(u) tr(v) = tr(u \otimes v)$.
- **4.** Montrer que $\det(u)^m \det(v)^n = \det(u \otimes v)$.

Exercice 2 —

- **1.** Soit E et F deux espaces vectoriels. Soit E' un sous-espace vectoriel de E et F' un sous-espace vectoriel de F. On note i l'inclusion de E' dans E et j l'inclusion de F' dans F. Montrer que $i \otimes j$ est injective, en déduire que $E' \otimes F'$ s'identifie canoniquement à un sous-espace vectoriel de $E \otimes F$ que l'on décrira.
- **2.** Soit $u \in L(E_1, E_2)$ et $v \in L(F_1, F_2)$. Montrer que $\operatorname{im}(u \otimes v) = \operatorname{im}(u) \otimes \operatorname{im}(v)$. En déduire que $\operatorname{rg}(u \otimes v) = \operatorname{rg}(u)\operatorname{rg}(v)$.
 - **3.** Donner une formule pour $\ker(u \otimes v)$.

Exercice 3 — Soit E et F deux espaces vectoriels de dimension ≥ 2 .

- 1. Donner un élément de $E \otimes F$ qui n'est pas un tenseur simple.
- **2.** Donner un exemple d'application h de $E \otimes F$ dans un espace vectoriel G tel que $h(x \otimes y) \neq 0$ pour tout x de $E \setminus \{0\}$ et y de $F \setminus \{0\}$ mais qui n'est pas injective.

Exercice 4 — Soit E et F des k-espaces vectoriels.

1. Soit n dans \mathbb{N} et soit $(x_i)_{1 \leq i \leq n}$ dans E^n et $(y_i)_{1 \leq i \leq n}$ dans F^n . En utilisant la propriété universelle du produit tensoriel, montrer que $\sum_{i=1}^n x_i \otimes x_i$

- $y_i = 0$ si et seulement si pour toute forme bilinéaire $f: E \times F \to k$, on a $\sum_{i=1}^{n} f(x_i, y_i) = 0$.
- **2.** En déduire que si $(x_i)_{1 \le i \le n}$ est une famille libre de E et y est un vecteur de F, alors $\sum_i x_i \otimes y = 0$ si et seulement si y = 0.
- **Exercice 5** Soit E et F deux k-espaces vectoriels. On rappelle qu'il existe une unique application linéaire $\varphi: E^* \otimes F \to \operatorname{Hom}(E,F)$ qui vérifie : $\varphi(\mu \otimes x)$ est l'application linéaire $z \mapsto \mu(z)x$, et que de plus φ est un isomorphisme.
- **1.** Expliciter une forme bilinéaire canonique $\psi : E^* \times E \to k$. On note $\overline{\psi} : E^* \otimes E \to k$ le morphisme induit par ψ .
- **2.** Pour cette question on suppose que E = F. Montrer que $\overline{\psi} \circ \varphi^{-1} = \operatorname{tr}$, où tr désigne la trace sur L(E).
- **3.** Pour t de $E^* \otimes F$ on note $\ell(t)$ le plus petit entier r tel que t s'écrive comme une somme de r tenseurs simples. Montrer que $\operatorname{rg}(\varphi(t)) = \ell(t)$.
- **4.** Si on suppose dim E et dim $F \geq 2$, déduire de la question précédente un exemple d'élément de $E^* \otimes F$ qui n'est pas un tenseur simple.
 - 5. Relire l'exercice 8 de la feuille de TD2 à la lumière de cet exercice.

Exercice 6 — Soit E et F deux espaces vectoriels.

- **1.** Montrer que l'application $E \times F \to F \otimes E$ donnée par $(x,y) \mapsto y \otimes x$ est bilinéaire. En déduire l'existence et l'unicité d'une application linéaire $f: E \otimes F \to F \otimes E$ vérifiant $f(x \otimes y) = y \otimes x$ pour tout $x \in E$ et $y \in F$.
- **2.** On construit de même une application linéaire $g: F \otimes E \to E \otimes F$ telle que $g(y \otimes x) = x \otimes y$. Montrer que $f \circ g$ est l'identité de $F \otimes E$ et $g \circ f$ est l'identité de $E \otimes F$.
 - 3. Montrer les autres isomorphismes canoniques vus en cours.
 - **4.** Donner un isomorphisme canonique entre $E^* \otimes F^*$ et $(E \otimes F)^*$.
- **Exercice 7** Soit E et F deux espaces vectoriels. Soit T_1 et T_2 deux espaces vectoriels, chacun muni d'une forme bilinéaire $b_i: E \times F \to T_i$, vérifiant la propriété universelle suivante : pour tout espace vectoriel V, l'application $\lambda_{i,V}: \operatorname{Hom}(T_i,V) \to \operatorname{Bil}(E,F;V)$ donnée par $f \mapsto f \circ b_i$ et bijective.
- **1.** Montrer qu'il existe une unique application linéaire $f: T_1 \to T_2$ telle que $f \circ b_1 = b_2$, et une unique application linéaire $g: T_2 \to T_1$ telle que $g \circ b_1 = b_2$.
 - **2.** Montrer que $f \circ g = \operatorname{Id}_{T_2}$ et $g \circ f = \operatorname{Id}_{T_1}$.
- **Exercice 8** Soit E un espace vectoriel et n > 0 un entier. Pour tout espace vectoriel F, on note n-Lin(E; F) l'espace des applications n-linéaires de $E \times \cdots \times E$ dans F. Donner un isomorphisme entre n-Lin(E; F) et $L(\bigotimes_n E, F)$ (où $\bigotimes_n E$ est le produit tensoriel de E avec lui-même n fois).